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Abstract

This thesis presents the development of a Point Source Atom Interferometer (PSI) for high-precision

rotation sensing. We explore both experimental and theoretical advancements in PSI technology, with a

focus on enhancing sensitivity, dynamic range, and potential for miniaturization.

Our experimental work involves the design and construction of a versatile dual-chamber apparatus,

comprising a two-dimensional magneto-optical trap (2D-MOT) for cold atom generation and a three-

dimensional MOT (3D-MOT) chamber for atom trapping and interferometry. A key ingredient is the

integration of high-gradient magnetic coils within the vacuum chamber, enabling strong atom confinement

while minimizing power consumption and heat generation.

On the theoretical front, we introduce the Squeezed Point Source Interferometer (SPSI) method,

which incorporates a repulsive potential to manipulate the atomic ensemble’s phase-space distribution

prior to the interferometer sequence. Through analytical derivations and numerical simulations, we

demonstrate that SPSI can enhance the interferometer’s sensitivity by up to two orders of magnitude

while simultaneously reducing the cycle time.

We present a comprehensive performance analysis, introducing a compactness factor that encapsulates

sensitivity, dynamic range, and device size. Our results show improvements of up to four orders of

magnitude over standard PSI configurations, paving the way for the development of chip-scale atom

interferometers for rotation sensing.

This work contributes to the advancement of atom interferometry technology, pushing the boundaries

of precision measurement while making significant progress toward practical, compact devices for real-

world applications in inertial navigation, geophysics, and fundamental physics tests.
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1 Introduction

Atom interferometry has emerged as a powerful technique for high-precision measurements in funda-

mental physics and applied sensing. By exploiting the wave nature of matter, atom interferometers can

achieve exquisite sensitivity to inertial effects, gravitational fields, and fundamental constants. The field

originated with pioneering experiments in 1991 demonstrating interference with neutral atoms [1–5], and

has since grown rapidly, with an acceleration of research efforts in the last decade.

The principle of atom interferometry relies on the manipulation of atomic wave packets using laser

pulses to create quantum superpositions and interference. Cold atom sources are typically used to enhance

coherence time and precision. A key advantage of atom interferometers over their optical counterparts is

the much larger effective energy associated with massive particles than with photons, potentially leading

to greatly enhanced sensitivity [6–8].

Atom interferometers have a wide range of applications, including inertial guidance [9, 10], geophysics

[11] and space-based research [12–15]. These often rely on two-photon Raman transitions for manipulating

atomic wave packets, which have become a standard technique in the field [16–22].

Recent research has focused on several key areas to improve the performance of atom interferometers.

Efforts have been directed towards increasing the interrogation time and physical size of the interferometer

to enhance sensitivity, as demonstrated in experiments with long-baseline and fountain configurations

[23, 24]. Researchers have also been developing large momentum transfer techniques to increase the

interferometer area, including the use of Bloch oscillations and multi-photon Bragg diffraction [25–37].

The utilization of quantum resources such as squeezed states to surpass the standard quantum limit has

been explored [38, 39], offering potential improvements in measurement precision.

In parallel, there has been significant work on engineering compact and portable systems suitable for

field use [40–42], addressing the challenges of taking atom interferometers out of the laboratory. This

includes efforts to miniaturize components and develop robust laser systems. These advancements col-

lectively aim to push the boundaries of atom interferometry, enabling new applications in fundamental

physics tests, geodesy, and inertial navigation. By addressing key challenges in sensitivity, portabil-

ity, and practical implementation, researchers are working towards realizing the full potential of atom

interferometry for high-precision inertial measurements.

This thesis focuses on the development and optimization of a Point Source Atom Interferometer (PSI)

for rotation sensing. The PSI technique, first demonstrated by Dickerson et al. [43], utilizes a single

expanding cloud of cold atoms to measure rotation rates by analyzing the spatial frequency of atomic

density fringes. This approach offers several advantages over traditional atom interferometers, including

simplified experimental configurations and multi-axis sensing capabilities.

Our work encompasses both experimental and theoretical advances in PSI technology. On the ex-

perimental front, we have designed and constructed a versatile apparatus comprising a two-dimensional

magneto-optical trap (2D-MOT) for cold atom generation and a three-dimensional MOT (3D-MOT)

chamber that serves as both the atom trap and interferometry region. This dual-chamber design, de-

tailed in Sec. 4, allows for efficient production and manipulation of cold 87Rb atoms. A key feature of
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our setup is the integration of high-gradient magnetic coils within the vacuum chamber, enabling strong

atom confinement while minimizing power consumption and heat generation.

The laser systems, crucial for atom cooling, trapping, and coherent manipulation, are described in

Sec. 4.2. We employ a combination of distributed Bragg reflector (DBR) lasers for the MOT operations

and a narrow-linewidth telecom laser system for Raman transitions. Careful design of the optical paths

and precise control of laser frequencies and powers are essential for achieving the desired atomic state

preparation and interferometric sequences.

A significant portion of this thesis is dedicated to the theoretical development and numerical simulation

of an enhanced PSI technique, which we term the Squeezed Point Source Interferometer (SPSI). As

presented in Sec. 5, the SPSI method incorporates a repulsive potential to manipulate the phase-space

distribution of the atomic ensemble prior to the interferometer sequence. This novel approach, analyzed

through both analytical derivations and numerical simulations, demonstrates substantial improvements

in sensitivity, dynamic range and potential for miniaturization, compared to conventional PSI techniques.

Our performance analysis, detailed in Sec. 5.3, reveals that the SPSI method can enhance the inter-

ferometer sensitivity by up to two orders of magnitude while simultaneously reducing the cycle time.

Moreover, we introduce a compactness factor that encapsulates sensitivity, dynamic range, and device

size, demonstrating improvements of up to four orders of magnitude over standard PSI configurations.

These advancements open the door to the development of chip-scale atom interferometers for rotation

sensing, with potential applications in inertial navigation, geophysics, and tests of fundamental physics.

The thesis is structured as follows: Sec. 2 provides the theoretical foundations of atom interferometry,

coherent manipulation techniques, and the PSI method. Sec. 3 discusses various noise sources affecting

atom interferometers and presents our strategies for noise mitigation. The experimental apparatus is de-

scribed in detail in Sec. 4. Sec. 5 introduces the SPSI concept, including analytical derivations, numerical

simulations, and performance analysis.

On the basis of this work, we aim to contribute to the advancement of atom interferometry technology,

pushing the boundaries of precision measurement while making strides towards practical, compact devices

for real-world applications.
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2 Theory

This section aims to provide a comprehensive overview of the key concepts and principles underlying

atom interferometry, particularly focusing on its application to rotation sensing. We begin by examining

the fundamental interactions between light and matter (Sec. 2.1), which form the basis for coherent

manipulation of atomic states. We then explore the mechanics of two-photon Raman transitions (Sec. 2.2),

a crucial technique for state manipulation in atom interferometry. Following this stage, we explore the

principles of Mach-Zehnder atom interferometry (Sec. 2.3), a widely used configuration for precision

measurements. Finally, we introduce the Point Source Interferometer (PSI, Sec. 2.4), an interferometer

technique that offers unique advantages in rotation sensing and forms the core of our research. Throughout

this section, we will bridge the gap between semi-classical descriptions and fully quantum mechanical

treatments, providing insight into both the practical implementation and fundamental limits of atom

interferometric rotation sensors.

2.1 Light-Matter Coherent Manipulation

The interaction between light and matter at the quantum level forms the foundation for many modern

atomic physics experiments and quantum technologies. In this section, we explore the theoretical frame-

work underlying the coherent manipulation of atomic two-state systems using electromagnetic radiation.

2.1.1 Two-Level Quantum System

The state of a two-level quantum system, such as specific hyperfine levels in alkali atoms, can be

represented as a superposition of two eigenstates of the unperturbed Hamiltonian H0:

|Ψ⟩ = C0|0⟩ + C1|1⟩, (1)

where C0 and C1 are complex probability amplitudes satisfying |C0|2 + |C1|2 = 1.

The state of a two-level system can be geometrically visualized on the Bloch sphere (Fig. 1). In this

representation, any pure state of the system corresponds to a point on the surface of a unit sphere in

three-dimensional space. The north and south poles of the sphere represent the basis states |0⟩ and |1⟩

respectively, while any other point on the sphere’s surface corresponds to a superposition state. The state

|Ψ⟩, from Eq. 1, can be parameterized using spherical coordinates θ and ϕ:

|Ψ⟩ = cos θ
2

|0⟩ + eiϕ sin θ
2

|1⟩. (2)

The Bloch vector v⃗b is defined as:

v⃗b =


sin θ cosϕ

sin θ sinϕ

cos θ

 . (3)

This vector provides a convenient way to visualize and manipulate the quantum state.

3



Figure 1: Bloch sphere [44]: (a) A general representation of a Bloch vector for a two-level system. (b) and

(c) are examples of Rabi pulses, where the dashed line is the Bloch vector before the pulse, and the full line is

the vector after the pulse. These examples refer to the π pulse (b) and π/2 pulse (c).

2.1.2 Rabi Oscillations

When subjected to coherent radiation, the evolution of the system can be described by the time-

dependent Schrödinger equation:

iℏ
∂|Ψ⟩
∂t

= (H0 + V (t))|Ψ⟩, (4)

where V (t) represents the atom-light interaction. In the rotating wave approximation, this leads to the

phenomenon of Rabi oscillations. The Rabi frequency ΩR characterizes the strength of the coupling

between the atom and the field. For a laser beam of intensity I
[
W/cm2

]
, the Rabi frequency is given

by:

ΩR = d⃗10 · ϵ⃗
ℏ

√
2I
cϵ0

, (5)

where d10 is the transition dipole moment, ϵ⃗ is the unit vector in the direction of the electric field, and c

and ϵ0 are the speed of light and vacuum permittivity, respectively.

The probability of finding the atom in the excited state oscillates as:

P1(t) = 1
2

Ω2
R

Ω̃2

(
1 − cos

(
Ω̃
t

))
, (6)

where Ω̃ =
√

Ω2
R + δ2 is the generalized Rabi frequency, ΩR is the resonant Rabi frequency and δ is the

detuning from resonance.

Rabi oscillations form the basis for precise state manipulation through carefully timed pulses of

radiation. This can be described using the evolution of the Bloch vector in time [45, 46]:

v⃗b(t) =


1 0 0

0 cos θ(t) sin θ(t)

0 − sin θ(t) cos θ(t)

 · v⃗b(0) = Θθ(t) · v⃗b(0), (7)

where θ(t) is an integral over the Rabi frequency:

θ(t) =
∫ t

0
ΩRdt

′. (8)

Two particularly important types of pulses are (Fig. 1):

4



π Pulse: A pulse with duration tπ = π/ΩR (resonant case) causes a complete population inversion,

transferring all atoms from |0⟩ to |1⟩ or vice versa. On the Bloch sphere, this corresponds to a 180°

rotation around the x-axis. The effect of a π pulse on the Bloch vector can be represented by the matrix:

Θπ =


1 0 0

0 −1 0

0 0 −1

 . (9)

π/2 Pulse: A pulse with duration tπ/2 = π/(2ΩR) creates an equal superposition of the two states.

Starting from |0⟩, it produces the state 1√
2 (|0⟩ + |1⟩). On the Bloch sphere, this corresponds to a 90°

rotation around the x-axis. The effect of a π/2 pulse on the Bloch vector is given by:

Θπ/2 =


1 0 0

0 0 −1

0 1 0

 . (10)

These pulses are fundamental building blocks in quantum control protocols, including the Ramsey

interferometry sequence, which consists of two π/2 pulses separated by a free evolution period. This

sequence is crucial in numerous precision measurement applications, including atomic clocks and inertial

sensors. The ability to precisely control the duration, frequency, and phase of these pulses enables

the intricate manipulation of quantum states, forming the basis for quantum computation and sensing

protocols with atomic systems.

2.2 Two-Photon Raman Transitions

Raman transitions involve the absorption of one photon from one laser beam (pump beam) and the

stimulated emission of another photon into a second laser beam (Stokes beam) to couple two atomic

levels. This process is particularly useful for manipulating atomic states in quantum optics and atom

interferometry experiments.

Consider a three-level atom in a laser field composed of two beams in a Λ configuration, as shown

in Fig. 2. The pump beam couples levels |1⟩ and |e⟩, while the Stokes beam couples levels |2⟩ and |e⟩,

resulting in a coherent coupling between |1⟩ and |2⟩.

To avoid resonant excitation, the detuning ∆ of the Raman beams from the one-photon transition

must be much larger than the linewidth Γ of |e⟩. The Hamiltonian matrix for the system, in the rotating

wave approximation, is given by [46]:

H = ℏ
2


0 0 ΩP

0 2δ ΩS

Ω∗
P Ω∗

S 2∆

 , (11)

where ΩP and ΩS are the Rabi frequencies of the pump and Stokes beams, respectively, and δ is the

two-photon detuning. The Rabi frequency for transition between |1⟩(|2⟩) and |e⟩ energy levels is given

5



Figure 2: Raman Λ-configuration: |1⟩ and |2⟩ are the ground levels (separated by ∆HFS) and |e⟩ is the excited

level, with width Γ, ∆ being the detuning of the virtual level from |e⟩, and δ the detuning from the two-photon

resonance.

by the electric dipole interaction under the rotation wave approximation [47]:

Ω1e = ⟨1|d⃗ · E⃗−
0 |e⟩

ℏ
≡ ΩP ; Ωe1 = ⟨e|d⃗ · E⃗+

0 |1⟩
ℏ

≡ ΩP
∗

Ω2e = ⟨2|d⃗ · E⃗−
0 |e⟩

ℏ
≡ ΩS ; Ωe2 = ⟨e|d⃗ · E⃗+

0 |2⟩
ℏ

≡ ΩS
∗,

(12)

where E+
0
(
E−

0
)

is the positive(negative) frequency component amplitude of the electric field and d is the

dipole element. For a laser beam of intensity I [W/cm2], the Rabi frequencies are given by:

|Ωie|
2π

[MHz] = 70.24

∣∣∣∣∣ d⃗ie · ϵ̂
ea0

∣∣∣∣∣√I, (13)

where d⃗ie is the dipole matrix element between states |i⟩ and |e⟩, ϵ̂ is the unit vector in the direction of

the electric field, e is the elementary charge, and a0 is the Bohr radius.

Under the condition that ∆ is much larger than ΩP and ΩS , we can adiabatically eliminate the excited

state |e⟩ and reduce the system to an effective two-level system described by:

Heff = ℏ
4∆

 Ω2
P ΩP ΩS

ΩP ΩS Ω2
S − 4δ∆

 . (14)

This effective Hamiltonian leads to Rabi oscillations between states |1⟩ and |2⟩ with an effective Rabi

frequency:

ΩR = ΩP ΩS

2∆
. (15)

The probability of finding the atom in state |2⟩, starting from state |1⟩, is given by:

P2(t) = 1 − P1(t) =
(

ΩR

Ω0

)2

sin2
(

Ω0t

2

)
, (16)

where the generalized Rabi frequency is given by Ω0 =
√

Ω2
R + δ2.

2.2.1 Momentum Transfer due to Raman Transitions

The propagation direction of the two light fields, k⃗1 and k⃗2, and the motion of the wave packets, affect

the Raman transition in three important ways:
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Figure 3: Counter-propagating Raman operations [48]: A space-time diagram of beam-splitting and

mirror operations in the counter-propagating Raman beams configuration, for cases where the atom initially

occupies |1, p⃗ = 0⟩ and |2, p⃗ = ℏk⃗eff⟩ in the top and bottom rows, respectively. The |2, p⃗ = ℏk⃗eff⟩ state is shown

traveling upwards at twice the recoil velocity, 2v⃗rec = ℏk⃗eff/m.

1. The effective Rabi frequency is changed by ΩR → ΩR exp
(
ik⃗eff · r⃗

)
, where k⃗eff = k⃗1 − k⃗2 and r⃗ is

the position of the wave packets during the transition. Hence, the phase imprinted on the wave

packets by the interaction, ϕΩ, picks up a factor of k⃗eff · r⃗.

2. A two-photon Doppler shift changes the two-photon detuning by δ → δ − k⃗eff · v⃗, where v⃗ is the

wave-packet velocity.

3. Momentum conservation during the interaction implies that the atomic states participating in the

transition must have a momentum difference of ∆p⃗ = ℏk⃗eff.

In the counter-propagating case, which is often used in atom interferometry, k⃗eff ≈ 2k⃗1 and the atom

absorbs a photon in one direction and emits a photon in the opposite direction. In this scenario, ∆p⃗

corresponds to twice the photon recoil velocity v⃗rec ≃ 2ℏk⃗1/m, where m is the atomic mass. Hence, the

states correspond to significantly different momentum states, as depicted in Fig. 3.

2.2.2 Retro-Reflection Raman Beams

Experimental convenience often involves sending both Raman beams from the same direction, while

using a retro-reflecting mirror to achieve counter-propagation. When the two frequencies travel in one

dimension, we label their original direction as ”downward”, which makes the retro-reflecting beams ori-

ented ”upward”. We now have four fields at ±k1 and ±k2. Three Raman transitions are possible: the

Doppler-free (simultaneously with the downward and upward pairs) and the Doppler-sensitive cases with

keff = k1 + k2 or −keff = −k1 − k2.

The polarization of Raman beams determines which transition is possible, so adding polarization optics

can eliminate unwanted transitions. By rotating the polarization of the beam upon retro-reflection, we can

choose transitions which are either only Doppler-free or only Doppler-sensitive (Fig. 4b). Furthermore, if

we use the two beams with perpendicular polarizations, we can selectively remove one with a polarizing

7



Figure 4: Raman retro-reflecting geometry [49]: A schematic representation of different realizations of

Raman beam polarizations in a retro-reflecting geometry, for circular polarizations (in the lab frame). From left

to right, the three optional transitions are indicated by black lines (the green two-sided arrows indicate which

transition is possible): negative Doppler-sensitive, Doppler-free, and positive Doppler-sensitive. (a) All transitions

are possible without polarization optics, and the beams polarizations must be identical. (b) The Doppler-free

transition can be canceled by adding a λ/4 plate above the mirror, and using opposite polarizations. There

will only be a Doppler-free transition if the beams are equally polarized. (c) A polarized beam splitter (PBS)

is added to eliminate one retro-reflected beam. The incoming beams are oppositely polarized, so only a single

Doppler-sensitive transition remains.

beam splitter (PBS) before retro-reflection (Fig. 4c).

2.2.3 Raman Transitions in Rubidium Atoms

In the context of atom interferometry with alkali atoms, Raman transitions are typically performed

between the magnetically-insensitive Zeeman states (mF = 0) of the two ground-state hyperfine manifolds

(”clock” states), F = 1 and F = 2 in the case of 87Rb, which we denote |1⟩ and |2⟩. Each of the two light

fields Ω1 and Ω2 couples off-resonantly between these ground states and multiple excited state hyperfine

levels, as shown in Fig. 5.

The choice of these particular ”clock” states (mF = 0) for Raman transitions in rubidium atoms is not

arbitrary. These states are selected due to their insensitivity to first-order magnetic field fluctuations.

This property is crucial in atom interferometry experiments, as it helps to minimize decoherence and

systematic errors that could arise from ambient magnetic field variations. The magnetic insensitivity of

these states contribute to longer coherence times and more precise measurements, which are essential for

high-performance atom interferometers and atomic clocks.

In this reduced system, we adapt the effective Rabi frequency (Eq. 15) to become:

Ω̃R =
∑

i

Ωi,1Ωi,2

2(∆ − ∆i)
, (17)
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Figure 5: Raman transition in the 87Rb manifold [49]: Energy level diagram of the 87Rb D2 optical

transition at 780nm, assuming a magnetic field is lifting the degeneracy by Zeeman shifts (not to scale). In green,

the ”clock” mF = 0 states in the two ground-state hyperfine manifolds. In red, the excited sub-levels that can

participate in the Raman transition between the clock states.

where the summation is for all the excited sub-levels that can participate in the Raman transition between

the clock states.

2.3 Mach-Zehnder Atom Interferometry

The Mach-Zehnder scheme is widely used in atom interferometry, particularly for gravimetry and ac-

celeration sensing [1]. This configuration, analogous to its optical counterpart, consists of three elements:

1. An initial π/2 beam splitter pulse, which separates the atomic wave function into its two states.

2. After a time T , a π mirror pulse, which flips the states.

3. Finally, after another time T , another π/2 pulse to mix the states and erase the which-path infor-

mation.

The three-pulse Mach-Zehnder sequence is a powerful configuration for atom interferometry. It allows

for high-sensitivity measurements due to the large spatial separation of the wave packets and their

subsequent recombination [6]. The schematic representation of this sequence is shown in Fig. 6.

2.3.1 Interferometer Phase

The primary contribution to the Mach-Zehnder interferometer phase results from the phases imprinted

on the atoms at each interaction with the Raman beams. Assuming the atom is initialized in the |1, p⃗ = 0⟩

9



Figure 6: Mach-Zehnder atom interferometer scheme: For a two-level system, we begin at the ground

state (|1, p⟩), where p stands for the atom momentum. The first π/2 pulse creates an internal superposition of

the F = 1 (|1⟩) and F = 2 (|2⟩) states, while adding 2ℏk momentum to the upper state (|2⟩). Next, we apply

the π pulse, which ”mirrors” the states, meaning that |1, p⟩ → |2, p + 2ℏk⟩ and |2, p + 2ℏk⟩ → |1, p⟩. When the

two wave packets of each atom overlap again, we erase the ’which-path’ information encoded in the momentum

and spin by mixing both with a final π/2 operation. This changes each spin to two possible spin states and,

likewise, each momentum to two possible momentum states. As a result, the population measured in each of

the two interferometer output ports is determined by the relative phase of the two interferometer arms, allowing

measurement of the relative phase.

state, following the initial π/2 pulse at t = 0, its wave function is given by [48]:

Ψ(0) = 1√
2

(
|1, p⃗ = 0⟩ + ie−ik⃗eff·r⃗1 |2, p⃗ = ℏk⃗eff⟩

)
, (18)

where r⃗1 denotes the classical position of the atoms at t = 0. After the π pulse at t = T the wave function

becomes:

Ψ(T ) = 1√
2

(
ie−ik⃗eff·r⃗2 |2, p⃗ = ℏk⃗eff⟩ − e−ik⃗eff·(r⃗3−r⃗1)|1, p⃗ = 0⟩

)
, (19)

where r⃗2 and r⃗3 are, respectively, the positions of the atom in the lower and upper interferometer paths

at t = T . Finally, following the second π/2 pulse at t = 2T , the wave functions are mixed to produce:

Ψ(2T ) = −1
2

[(
e−ik⃗eff·(r⃗1−r⃗3) + e−ik⃗eff·(r⃗2−r⃗4)

)
|1, p⃗ = 0⟩

+ie−ik⃗eff·r⃗4
(
e−ik⃗eff·(r⃗1−r⃗3) − e−ik⃗eff·(r⃗2−r⃗4)

)
|2, p⃗ = ℏk⃗eff⟩

]
,

(20)
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where r⃗4 is the common position of the atom at t = 2T . At the end of the interferometer sequence, we

thus have the probabilities to find the atom in each of its internal states:

P1 =
∣∣∣∣12 (e−ik⃗eff·(r⃗1−r⃗3) + e−ik⃗eff·(r⃗2−r⃗4)

)∣∣∣∣2 = 1
2

(1 + cosϕ)

P2 =
∣∣∣∣12 (e−ik⃗eff·(r⃗1−r⃗3) − e−ik⃗eff·(r⃗2−r⃗4)

)∣∣∣∣2 = 1
2

(1 − cosϕ),
(21)

with the interferometer phase:

ϕ = k⃗eff · (−r⃗1 + r⃗2 + r⃗3 − r⃗4). (22)

We notice that the expression for ϕ (Eq. 22) resembles a discrete second-order derivative of the atom

position through the interferometer time. By assuming that the atom experiences a constant acceleration

a⃗, we get:

ϕ = −k⃗eff · a⃗T 2. (23)

For the specific case of pure free fall and Raman beams which are aligned vertically, we get ϕ = keffgT
2,

which indicates that such an interferometer scheme can determine g with high resolution.

The interrogation time T plays a crucial role in determining the sensitivity of the interferometer.

As seen in Eq. 23, the phase shift scales quadratically with T . This implies that longer interrogation

times lead to larger phase shifts and, consequently, higher sensitivity to accelerations and rotations

(Sec. 2.3.2). However, increasing T also presents practical challenges. The atomic cloud expands during

the interrogation time, potentially leading to a reduced signal-to-noise ratio due to decreased atomic den-

sity. Additionally, longer interrogation times make the interferometer more susceptible to environmental

perturbations and decoherence effects. Therefore, the choice of T requires a careful balance between

sensitivity and experimental constraints.

A more general approach to determine the interferometer phase is by considering the space-time area

A⃗ enclosed by the interfering arms:

A⃗ =
∫

∆r⃗(t)dt, (24)

where ∆r⃗ is the spatial separation between the arms. For a constant acceleration a⃗, the phase shift is

given by [48]:

ϕa⃗ = −m

ℏ
a⃗ · A⃗. (25)

Similarly, the spatial, or vector, area enclosed by the interferometer arms is given by:

A⃗ = 1
2

∮
r⃗ × dr⃗, (26)

which gives rise to an interferometer phase related to a rotating motion of the atoms:

ϕΩ⃗ = 2m
ℏ

Ω⃗ · A⃗, (27)

where Ω⃗ is the rotation velocity. This phase is equivalent to the Sagnac phase shift [50]:

ϕSagnac = 2E
ℏc2 Ω⃗ · A⃗, (28)
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where E is the energy of the interfering particles. For atoms, we can use E = mc2, which makes Eq. 27

and Eq. 28 equivalent. The Sagnac effect, originally discovered for light interferometers, manifests in

atom interferometers due to the wave nature of matter. The key difference is that the phase shift for

atoms is proportional to their mass, potentially leading to much higher sensitivities compared to optical

interferometers.

This space-time area approach provides a powerful framework for understanding and calculating

the phase shifts in various atom interferometer configurations, connecting the classical Sagnac effect to

quantum matter-wave interferometry. In the following section, we will explore how this framework applies

specifically to rotation sensing in Mach-Zehnder atom interferometers.

2.3.2 Rotation Sensing

The Mach-Zehnder atom interferometer becomes sensitive to rotations when the two interfering paths

enclose a spatial area. This occurs when the atoms have a velocity component perpendicular to k⃗eff. In

this case, the rotation phase can be expressed as:

ϕΩ⃗ = 2Ω⃗ · (v⃗ × k⃗eff)T 2, (29)

where v⃗ is the average velocity of the atoms during the interferometer sequence. This equation is equiva-

lent to the Sagnac phase shift derived in the previous section (Eqs. 27-28), with the enclosed area A⃗ now

explicitly given by (v⃗× k⃗eff)T 2. A unique feature of rotation sensing in atom interferometry is the explicit

dependence on the velocity of the atoms. This factor introduces both challenges and opportunities:

1. Velocity-dependent phase: The rotation phase varies with the atomic velocity, requiring careful

consideration of the velocity distribution in the atomic ensemble.

2. Velocity selection: The velocity dependence allows for selective probing of specific velocity classes

within the atomic ensemble, potentially enhancing the signal-to-noise ratio.

3. Multi-axis sensing: By manipulating the direction of k⃗eff and the atomic velocity distribution, it is

possible to create interferometers sensitive to rotations around different axes.

In practical implementations, the output signal of the interferometer must be averaged over the

velocity distribution of the atomic ensemble. This averaging process can impact the overall sensitivity

and dynamic range of the rotation sensor.

The ability to measure rotations using atom interferometry lays the foundation for a wide range of

applications, from inertial navigation systems to tests of fundamental physics. In the following sections, we

will explore specific implementations and techniques that leverage high-level rotation sensitivity, including

the point source interferometry method that forms the focus of our research.

While the Mach-Zehnder configuration provides a powerful tool for rotation sensing, its sensitivity

to initial atomic velocities limits its practical applications. In the next section, we will explore an

alternative approach, the Point Source Interferometry (PSI) method [43, 51, 52], which addresses some

of these challenges and forms the core of our research.
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Figure 7: The PSI experiment [53]: (a) The initial atom cloud is prepared and then released into free fall

while interacting with Raman beams to undergo an interferometer sequence made of π/2 − π − π/2 pulses. One

of the beams is reflected from the rotating mirror, which simulates a rotation in the frame of the atom. After

the atom falls for some time, and the cloud has expanded, it is imaged (the image beam is deflected to the CCD

camera by the polarized beam-splitter, PBS, after passing through a quarter-wave plate, λ/4) and the fringe

pattern is captured. (b) and (c) are examples of fringe patterns for different rotations of the mirror.

2.4 Point Source Interferometer

The Point Source Interferometer (PSI) is a specific implementation of light-pulse atom interferometry

that offers unique advantages for rotation sensing. First introduced by Dickerson et al. [43], PSI utilizes a

single expanding cloud of cold atoms to measure rotations by probing the spatial frequency of the atomic

density in a given output internal atomic state.

2.4.1 Principle of Operation

The PSI method (Fig. 7) exploits the correlation between position and velocity generated by the

expansion of an initially compact atomic cloud throughout the interferometer sequence. When the final

cloud size significantly exceeds its initial size, each atom’s final position, x⃗, is essentially dictated by its

initial thermal velocity, v⃗. This allows for the approximation x⃗ ≈ v⃗Tex, where Tex represents the total

expansion time.

In the ideal case of a perfect point source, where all atoms originate from the same point in space,

the Sagnac phase becomes [51]:

∆ΦΩ,PS = 2T 2
R

Tex
(k⃗eff × Ω⃗) · x⃗ ≡ k⃗x · x⃗, (30)

where TR is the Ramsey time between interferometer pulses, k⃗eff is the effective wave vector of the Raman

beams, and Ω⃗ is the rotation rate.
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However, in real experiments, the atomic cloud has a finite initial size and can be approximated by a

Gaussian spacial distribution. For a cloud with an initial Gaussian spatial distribution of width σx0 and

a Gaussian velocity distribution of width σv0, the phase-space density at time t is given by:

ρ(x, v, t) ∝ exp
(

−1
2

[
(x− vt)2

σ2
x0

+ v2

σ2
v0

])
. (31)

This finite initial size affects both the fringe pattern and the contrast of the interferometer. The

probability of finding an atom in a particular internal state |s⟩ at position x⃗ becomes [54]:

Ps(x⃗) = 1
2

[1 + C cos
(
αk⃗x · x⃗+ ϕs

)
], (32)

where C is the fringe contrast, α = 1 − σ2
x0/σ

2
f accounts for the finite initial size of the cloud, σf =√

σ2
x0 + T 2

exσ
2
v0 is the final cloud size, and ϕs is a phase offset determined by gravity and platform

acceleration. The contrast C is given by:

C = C0 · exp

[
−1

2
k2

xσ
2
x0

(
1 − σ2

x0
σ2

f

)]
, (33)

where C0 is the base contrast of the interferometer.

These equations highlight several key differences between the ideal point-source case and the realistic

Gaussian cloud:

1. Fringe periodicity: In the Gaussian case, the fringe periodicity is modified by the factor α, which

approaches 1 as the cloud expands (σf ≫ σx0).

2. Contrast: The contrast decreases with increasing kx and σx0, limiting the maximum detectable

rotation rate.

3. Position-velocity correlation: The finite initial size introduces imperfections in the position-velocity

correlation, affecting the overall sensitivity of the interferometer.

Understanding these differences is crucial for optimizing PSI performance and accurately interpreting

experimental results. The interplay between initial cloud size, expansion time, and fringe periodicity

determines the sensitivity and dynamic range of the PSI, which we will discuss in more detail in subsequent

sections.

2.4.2 Advantages and Limitations

The PSI method offers several advantages over traditional Mach-Zehnder atom interferometers:

1. Single-source operation: PSI requires only one atomic cloud, simplifying the experimental setup

compared to dual-cloud interferometers [55–58].

2. Multi-axis sensing: By analyzing the fringe pattern in different directions, PSI can simultaneously

measure rotations around multiple axes [43].

3. Compact design: The expanding cloud geometry allows for the use of a more compact device, as

opposed to large-area atom interferometers [51].
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However, PSI also faces some limitations:

1. Finite dynamic range: The measurable rotation rates are bounded by the condition that the fringe

spacing must be larger than the initial cloud size and smaller than the final cloud size.

2. Velocity-dependent sensitivity: The sensitivity varies across the atomic cloud due to the position-

velocity correlation.

2.4.3 Sensitivity and Dynamic Range

The sensitivity of a PSI to rotations, limited by projection noise, is given by [59]:

δΩ = Tex/T
2
R

2C
√
Nν/2keffσf

, (34)

where N is the number of atoms per operation and ν is the frequency of operations.

While sensitivity is crucial for precise measurements, the range of rotations that can be detected is

equally important for practical applications. This range, known as the dynamic range, is determined by

the minimum and maximum detectable rotation rates.

The PSI method differs from traditional interferometric rotation sensors in several key aspects:

1. Measurement quantity: In traditional sensors, the Sagnac phase is directly measured and typically

shows a linear correlation with rotation. In PSI, the spatial frequency of interference fringes is

measured.

2. Smallest detectable rotation: For traditional sensors, this is determined by the smallest measurable

phase difference. In PSI, it is set by the condition kxσf ≳ 1, ensuring that the cloud size exceeds

the period of spatial oscillation.

3. Maximum detectable rotation: In PSI, this is limited by the condition kxσx0 ≳ 1, where the fringe

period becomes larger than the initial cloud size, causing diminishing contrast.

4. Dynamic range: For PSI, this is constrained to 1/σf ≲ kx ≲ 1/σx0, leading to the following limits:

Ωmin ∼ Tex/T
2
R

2keffσf
; Ωmax ∼ Tex/T

2
R

2keffσx0
, (35)

resulting in a dynamic range ratio of Ωmax/Ωmin ∼ σf/σx0.

5. Relationship between sensitivity and minimum detectable rate: In PSI, δΩ/Ωmin ≈ 1/
√
N/2, sug-

gesting that the sensitivity (uncertainty) can be much smaller than the minimum detectable rate.

It should be noted that these limits and relationships are approximations and can vary, depending on

the specific image analysis method used, such as ellipse fitting [60], phase shear [61], or phase map [62]

techniques.
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2.4.4 Quantum Derivation of PSI

To gain a deeper understanding of the PSI, we can derive its behavior from a quantum mechanical

perspective. Consider an initial wave function ψ(r⃗) subject to a sequence of splitting and recombining

pulses π/2 − π − π/2 with an initial state |0⟩ and another state |1⟩. In the inertial frame, the initial

pulse applies a momentum transfer keff in the ẑ direction to the state |1⟩. The subsequent pulses apply

momentum kicks in directions that evolve due to rotation. For small rotation rates (ΩTR ≪ 1), we can

approximate the dynamics along the x̂ direction. The two paths end up with the same velocity but at

different positions:

x|1⟩−|0⟩ = x0 + 2v0TR − vRΩT 2
R, x|0⟩−|1⟩ = x0 + 2v0TR + vRΩT 2

R, (36)

where vR = ℏkeff/m is the recoil velocity. The phase difference between the two paths due to the velocity

difference in the x-direction is:

δϕrot = m

2ℏ
[(v0 − vRΩTR)2 − (v0 + vRΩTR)2]TR = −2keffv0ΩT 2

R, (37)

which is consistent with our earlier derivation of the rotation phase (Eq. 30).

The final wave function in the state |0⟩ after the sequence is:

ψf (x) = 1√
2

[ψσ(x− xa) + ψσ(x− xb)e−iδϕrot ], (38)

where xa and xb are the final positions of the two paths, and ψσ is the wave function after expansion

from an initial width σ0 to a final width σ after time t = 2TR. It follows that the final wave function

is similar to the result of an expansion starting with two Gaussian wave packets centered at a relative

distance d = |xa − xb| = 2vRΩT 2
R, leading to the emergence of a fringe pattern in a manner equivalent to

the double-slit experiment. Here, the distance d is proportional to the square of the interferometer time.

Still, the fringe periodicity depends on the total expansion time since the wave packet was of minimal

size.

The evolution of a Gaussian wave-packet in free space, or a quadratic potential, can be expressed in

terms of the evolution of the width σ. The simplified expression for one dimension in the frame moving

with the center of the wave-packet is given by [63, 64]:

ψσ(x, t) = ψ0[x/λ(t)]√
λ(t)

exp
(
im

2ℏ
σ̇

σ
x2
)
, (39)

where ψ0(x) is the initial wave-packet wave function and λ(t) = σ(t)/σ(0). The evolution of the width

of a Gaussian wave-packet in free space is given by:

σ(t) =
√
σ(0)2 + ℏ2t2/4m2σ(0)2 =

√
σ2

x0 + σ2
v0t

2 , (40)

with σv0 = ℏ/2mσx0 for a coherent Gaussian wave-packet.

The phase difference between the two wave functions at a given point x follows from the quadratic

phases of the expanding Gaussians of the form of Eq. 39 and is given by:

δϕ(x) = mσ̇

2ℏσ
[(x− vRΩT 2

R)2 − (x+ vRΩT 2
R)2] = −kΩx, (41)
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where kΩ = 2(σ̇/σ)keffΩT 2
R.

For a Gaussian wave-packet with an initial width σ0, we obtain:

kΩ = 2keffΩ T 2
R

Tex

(
1 − σ2

0
σ2

f

)
, (42)

which is equivalent to the semi-classical result of Eq. 30 in the limit of long expansion times (σf ≫ σ0),

as well as the well-known double-slit interference wave vector kΩ = md/ℏTex.

The contrast is obtained by observing the amplitude of the interference term from Eqs. 38-39:

exp

[
− (x− d/2)2

4σ2
f

− (x+ d/2)2

4σ2
f

]
= e−x2/2σ2

f e−d2/8σ2
f , (43)

from which it follows that the contrast is:

C = exp

(
−1

2
k2

Ω
σ2

0
1 − σ2

0/σ
2
f

)
, (44)

which is consistent with our earlier derivation (Eq. 33).

While the above derivation assumes a pure Gaussian state, in real experiments we often deal with

thermal clouds. A thermal cloud could be modelled as a mixture of states. For example, a thermal cloud

in an initial harmonic trap is a mixture of Hermite-Gaussian states:

ρ(x, x′) =
∑

n

wnΦn(x)Φ∗
n(x′), (45)

where n is the number of nodes in the function and runs from 0 to ∞ and wn ∝ exp(−nℏω/kBT ) are

the weights (probabilities) of the states |n⟩. It is clear that a thermal Boltzmann distribution yields a

Gaussian spatial distribution
∑

n wn|Φn(x)|2 ∝ exp
(
−x2/2σ2

T

)
with σT =

√
kBT/mω2 in a harmonic

trap. It follows that for a thermal distribution σ0 in Eq. 44 can be replaced by the width of the thermal

distribution to obtain the right expression for the contrast of an interferometer with a thermal cloud.

This expression for the contrast is identical to the expression appearing in [65].

This quantum mechanical derivation provides a more fundamental understanding of the PSI, con-

firming and extending the semi-classical results presented earlier. It offers insights into the origin of

the fringe pattern, the impact of wave packet evolution on the interferometer’s performance, and the

effects of finite temperature on the contrast. The consistency between this quantum approach and the

semi-classical treatment underscores the robustness of the PSI method. Moreover, this derivation lays

the groundwork for further refinements and optimizations of PSI-based rotation sensors, particularly in

scenarios where quantum effects become significant. As we move towards more precise and compact atom

interferometers, such quantum mechanical considerations will play an increasingly crucial role in pushing

the boundaries of rotation sensing capabilities.
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3 Noise Mitigation

In atom interferometers based on Raman transitions (Sec. 2.2), such as the point source interferometry

(PSI, Sec. 2.4), the phase difference between the two Raman lasers is imprinted on the phase of the

atomic wave function at each pulse. As this phase difference depends on the position of the atoms,

the interferometer is sensitive to inertial forces and can thus measure rotation rates and accelerations

(Sec. 2.3). However, a drawback of this technique is that the measurement of the interferometric phase is

affected by the phase noise of the Raman lasers as well as parasitic vibrations. This section analyzes the

primary noise sources affecting our PSI system and presents methods and considerations for mitigating

their effects.

3.1 Theory of Noise Sources

The phase sensitivity of an atom interferometer, defined as the uncertainty σϕ of the phase mea-

surement per shot, is affected by both the phase noise of the Raman lasers and seismic effects. In this

section, we provide an analytical analysis of these sources, which directly influence the phase noise in

measurements. These types of noise simply add to the measured phase, making it straightforward to

calculate their effect on the interferometer sensitivity.

3.1.1 Laser Phase Noise

Laser phase noise is a critical factor limiting the sensitivity of atomic interferometers. It arises from

instabilities in the relative phase of the Raman beams, which are imprinted on the atoms during each

interferometer pulse. To quantify the effect of laser phase noise, we employ the formalism of the sensitivity

function introduced by Cheinet et al. [66].

The sensitivity function g(t) characterizes how the interferometer phase Φ responds to fluctuations in

the Raman laser phase ϕ at time t during the interferometer sequence. It is defined as:

g(t) = 2 lim
δϕ→0

δP (δϕ, t)
δϕ

, (46)

where δP (δϕ, t) is the change in transition probability due to a small phase step δϕ applied at time t.

For a Mach-Zehnder π/2 − π− π/2 pulse sequence (Sec. 2.3) with total interrogation time 2T , we choose

the time origin at the middle of the π pulse. Thus, we have ti = −(T + 2τR) and tf = (T + 2τR), where

τR is the duration of a π/2 pulse (Sec. 2.1.2). For this case, we find that the sensitivity function of Eq. 46

is an odd function, with its expression for t > 0 given by:

g(t) =


sin(ΩRt) 0 < t < τR

1 τR < t < T + τR

− sin(ΩR(T − t)) T + τR < t < T + 2τR

, (47)

where ΩR is the Rabi frequency. The interferometer phase fluctuations due to laser phase noise can then

be calculated as:

δΦ =
∫ ∞

−∞
g(t)dϕ(t)

dt
dt. (48)
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Figure 8: Laser-phase transfer function: Plot of the laser-phase transfer function |HL(ω)|2 (see Eq. 50 and

H(ω) = ωG(ω)) calculated for Ramsey time of T = 30 ms and Rabi frequency of ΩR = 2π · 50 kHz. For angular

frequencies above 2π · 7 kHz a moving average was used.

To analyze the frequency-dependent response of the interferometer to phase noise, we consider a

sinusoidal phase modulation ϕ(t) = A0 cos(ω0t+ φ). The resulting phase shift is:

δΦ = −A0ω0Im[G(ω0)] cos(φ), (49)

where G(ω) is the Fourier transform of g(t):

G(ω) = 4iΩR

ω2 − Ω2
R

sin
(
ω(T + 2τR)

2

)(
cos
(
ω(T + 2τR)

2

)
+ ΩR

ω
sin
(
ωT

2

))
. (50)

The transfer function H(ω) = ωG(ω) characterizes how phase noise at different frequencies affects the

interferometer, as shown in Fig. 8. Key features of this function include:

• Zeros at frequencies fk = k/(T + 2τR), where k is an integer.

• Low-pass behavior with an effective cut-off frequency f0 = (
√

3/3)(ΩR/2π).

• ω−1 dependence for ω ≪ ΩR and ω−2 for ω ≫ ΩR

The sensitivity of the interferometer is characterized by the Allan variance of the phase fluctuations:

σ2
Φ(τ) = 1

τ

∞∑
n=1

|H(2πnfc)|2Sϕ(2πnfc), (51)

where fc = 1/Tc is the cycle frequency of the interferometer and Sϕ(ω) is the power spectral density

of the laser phase noise. This equation shows that the sensitivity is limited by an aliasing phenomenon

similar to the Dick effect in atomic clocks [67], where only the phase noise at multiples of the cycling

frequency contributes to the Allan variance.

For the simple case of white Raman phase noise, where Sϕ(ω) = S0
ϕ, Eq. 51 simplifies to:

σ2
Φ,0(τ) =

(π
2

)2 S0
ϕ

τ

Tc

τR
. (52)
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In this scenario, the sensitivity of the interferometer depends not only on the Raman phase noise

spectral density but also on the pulse duration τR. Intuitively, one might think that using the largest

possible pulse duration would yield better sensitivity. However, in the counter-propagating configuration

of Raman transitions (Sec. 2.2), longer pulses increase velocity selectivity, potentially reducing the number

of atoms contributing to the signal. This reduction can increase the detection noise contribution, creating

a trade-off. Consequently, there exists an optimum value of τR that depends on the specific experimental

parameters. For our PSI system, we found this optimum to be approximately τR ≃ 5µs.”

Minimizing laser phase noise is crucial for achieving high sensitivities. This typically involves phase

locking the Raman lasers to a low-noise microwave reference. The overall laser phase noise is influenced

by several factors, including:

• Reference oscillator noise.

• Noise from the microwave frequency synthesis chain.

• Residual noise from the laser phase-lock loop.

• Noise from optical fibers and other optical elements.

Each noise source must be carefully characterized and minimized to optimize the interferometer’s

performance. Techniques such as using ultra-low noise quartz oscillators, optimized phase-lock loop

designs, and vibration isolation of critical optical components, are employed to reduce the overall laser

phase noise [68, 69].

In conclusion, a thorough understanding of laser phase noise and its impact on atom interferometers

is essential for pushing the boundaries of measurement sensitivity. By carefully analyzing the transfer

function and minimizing various noise sources, we can design and implement more precise and accurate

atomic sensors for a wide range of applications. In the next section, we will make a thorough analysis of

the effect of seismic noise of the optical elements on the interferometer phase.

3.1.2 Seismic Noise

Mechanical vibrations of optical elements, particularly the retro-reflecting mirror (Sec. 2.2.2), intro-

duce phase noise between the Raman beams. This noise directly impacts the interferometer phase. If

separate optical elements are used to guide the Raman beams into the physics chamber, the whole ap-

paratus needs to be isolated from vibrations, as illustrated in Fig. 9a. When the same optical elements

are used for both Raman beams and a retro-reflecting mirror, vibrations from most optical elements are

common-mode and cancel out. As shown in Fig. 10, phase noise is only induced by vibrations of the

retro-reflecting mirror, and therefore, only this mirror has to be isolated against vibrations from the floor

(Fig. 9b).

The same formalism used for the laser phase noise (Sec. 3.1.1) can be used to evaluate the interferom-

eter phase noise due to parasitic vibrations caused by the movement of the retro-reflecting mirror. Here,

we decided to show another approach by analyzing the Mach-Zehnder interferometer phase of Eq. 22. We
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Figure 9: Schemes for suppressing vibration induced Raman phase noise [70]: Illustrated here are

two different frequency components (blue, red) to drive Doppler-sensitive Raman transitions depending on their

propagation direction. (a) A system where the beams are guided separately. (b) A system utilizing a retro-

reflecting mirror, as described in Sec. 2.2.2.

Figure 10: Vibration-induced Raman phase noise from retro-reflecting mirror [70]: The black and

gray lines illustrate the propagation of the two Raman beams. Vibrations induce a displacement of δz, which

leads to a phase difference of keffδz in the gray lines, relative to the black lines, which is the no-vibration case.

can express the phase including the effect of mirror vibrations as:

ϕ = k⃗eff · (− [r⃗1 − r⃗m(0)] + [r⃗2 − r⃗m(T )] + [r⃗3 − r⃗m(T )] − [r⃗4 − r⃗m(2T )])

= k⃗eff · [−r⃗1 + r⃗2 + r⃗3 − r⃗4] − k⃗eff · [−r⃗m(0) + 2r⃗m(T ) − r⃗m(2T )] , (53)

where r⃗m(t) is the position of the mirror at time t. The first term in brackets represents the ideal

interferometer phase ϕa as in Eq. 23, while the second term represents the vibration-induced phase ϕvib.

The contribution of vibration phase noise σϕ,vib can be quantified as

σ2
ϕ,vib =

∫ ∞

0
|Hvib(ω)|2Svib(ω)dω, (54)

where Svib(ω) is the power spectral density (PSD) of vibrations and Hvib(ω) is the vibration transfer

function of the interferometer. To derive Hvib(ω), we assume a vertical oscillatory perturbation to the
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Figure 11: Vibration transfer function: Plot of the vibration transfer function |Hvib(ω)|2 (Eq. 58) scaled by(
keffT 2)2 calculated for Ramsey time of T = 30 ms. For angular frequencies above 2π · 300 Hz a moving average

was used.

mirror with frequency ω:

am,ω(t) = aω,c cos[ω(t− T )] + aω,s sin[ω(t− T )]. (55)

Integrating twice to find the vertical position of the mirror zm,ω(t), we get:

zm,ω(t) = z0 + v0t− 1
ω2 am,ω(t), (56)

and substituting into the expression for ϕvib from Eq. 53, we obtain that the contributions of z0 and v0,

as well as the sine component (aω,s), vanish, such that:

ϕvib,ω = 4keffaω,c

ω2 sin2
(
ωT

2

)
. (57)

From this, we can derive the transfer function:

|Hvib(ω)| = 4keff
ω2 sin2

(
ωT

2

)
. (58)

This transfer function, illustrated in Fig. 11, exhibits several key features:

• Constant sensitivity for low frequencies (ω ≲ 2/T ).

• 1/ω2 decrease at higher frequencies.

• Zeros at frequencies ω = 2πn/T , where n ∈ N.

As with laser phase noise, minimizing seismic noise is crucial for achieving high sensitivities in atom

interferometers. This often involves a combination of passive and active vibration isolation techniques,

particularly for the retro-reflecting mirror. Understanding the vibration transfer function allows for

targeted noise reduction strategies, focusing on the most impactful frequency ranges for a given interfer-

ometer geometry. In the next sections, we will present methods to decrease phase noises in our system.

22



3.2 Laser Phase Noise Considerations

As described in Sec. 3.1.1, the phase stability of the Raman lasers is crucial for achieving high-precision

measurements in atom interferometry. Several sources contribute to the overall laser phase noise, each

requiring careful consideration and mitigation. In this section, we discuss the main contributors to laser

phase noise and our approaches to minimizing their impact.

3.2.1 Reference Oscillator and Microwave Frequency Synthesis

For our scheme of Raman interactions on the 87Rb atom (Sec. 2.2), the two light fields need to have

a frequency difference exactly as the hyper-fine splitting of the 87Rb atom. This is equal to ∆HF S =

6.834 GHz, meaning it is in the microwave (MW) domain. To ensure that this separation exists, a highly

precise MW synthesizer must be used.

There are different methods to generate the two Raman laser fields, such as phase locking a slave

laser to a master laser with a frequency offset of ∆HF S like in [66, 68, 69, 71]. Otherwise, one can use

the same laser source to create the two light fields using an electro-optical modulator, EOM, as in [48,

51], or an acousto-optical modulator, AOM, as in [72]. In either method, there is a need to use an MW

synthesizer to create the frequency offset between the two fields.

Any parasitic noise in the MW signal would be transferred to the laser phase (Sec. 3.1.1), hence the

need for a very precise and stable source. The stability is usually achieved by the use of a stable reference

oscillator. These devices usually have an output frequency signal of 10 MHz or 100 MHz, necessitating

frequency multiplication to fit the MW signal. We use SRS1 FS725 Rubidium frequency standard in our

setup, which has ultra-low phase noise and proved to perform better than our alternative from Accubeat2

(Fig. 12).

We opted to use the single source and EOM method (Sec. 4.2.2), as this has multiple advantages that

will be described in the next sections. For the MW synthesizer, we use the SRS SG384 signal generator.

Fig. 13 shows its performance relative to two other signal generators (Rohde-Schwartz3 SMR 20 and

Windfreak4 SynthHD PRO) which we have in our lab.

3.2.2 Laser Phase Lock

The phase coherence between the two Raman laser fields is achieved by using a phase-locked loop

(PLL). This is essential when two different laser sources are used, as each source will have its own phase.

However, even when using only one source to create the two Raman beams, they will, in most cases, need

to be separated and recombined (as in [51, 72]) and the difference in the optical paths will create phase

differences. The PLL, similar to the creation of the frequency offset between the Raman beams, uses a

reference signal for the electrical mixer from the reference oscillator.
1www.thinksrs.com
2www.accubeat.com
3www.rohde-schwarz.com
4windfreaktech.com
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Figure 12: Reference clock noise measurements: Phase noise power spectral density (PSD) measurements

of Rubidium frequency standards available in our lab. Measurements were performed for a center frequency of

10 MHz.

As we utilize a single laser source, our PLL system is necessary only to compensate for the differences in

the optical paths. Hence, the optical signals are measured as close as possible to where they are combined,

as presented in Fig. 21. The Vescent5 D2-135 system is employed for the PLL. This system promises high

performance and ease of use, but due to ongoing technical challenges, its full characterization in our

system remains to be completed.

3.2.3 Laser Intensity Fluctuations

Intensity fluctuations in the Raman lasers can significantly impact the performance of the atom

interferometer through several mechanisms. As described by Le Gouët et al. [68], these fluctuations

contribute to the interferometer phase noise in multiple ways:

• Rabi Frequency Fluctuations: The effective Rabi frequency ΩR of the Raman transition de-

pends on the product of the two laser field amplitudes (Sec. 2.2). Intensity fluctuations, therefore,

lead to variations in the Rabi frequency, affecting the population transfer efficiency during the inter-

ferometer pulses (Sec. 2.3). It can be quantified by the variance of the atomic population inversion

[73]: σW =
√

3πσI/2I, where σI is the variance in the total Raman beams’ intensity, I.

• AC Stark Shift: Variations in laser intensity lead to fluctuations in the AC Stark shift [74], which

directly affects the energy levels of the atoms. This one-photon light shift can be expressed as a

linear combination of the laser intensities, δν = β1I1 +β2I2. Here β1 and β2 are the AC Stark shift

coefficients for the two Raman lasers, I1 and I2 are their respective intensities. These shifts can

be mitigated by adjusting the intensity ratio between the two laser fields to β1I1 + β2I2 = 0. Still,

intensity fluctuations occurring on times scales shorter than the interferometer duration can lead
5vescent.com
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Figure 13: Microwave synthesizers noise measurements: Microwave synthesizers phase noise power spec-

tral density (PSD), calculated by multiplying the PSD measurement of each device with the laser phase transfer

function HL(2πf) from Sec. 3.1.1. The measurements have been done for a center frequency of ∆HF S = 6.834 GHz.

The interferometer phase noise σϕ,MW is calculated from the data using numerical integration.

to noise in the interferometer phase.

• Two-Photon Light Shift: In addition to the AC Stark shift, there is also a two-photon light

shift that depends on the intensities of both Raman beams. This shift can be expressed as,

Ω2
R (1/∆1 + 1/∆2), where ∆1 and ∆2 are the detunings from the intermediate state for the two

Raman transitions.

Several methods have been demonstrated to mitigate these effects, such as active intensity stabi-

lization, adjustment of the intensity ratio between the two Raman beams and use of composite pulse

sequences. In our system, we planned to implement active intensity stabilization and adjustment of

the intensity ratio by controlling the intensity of one of the Raman beams relative to the other, using

an acousto-optical modulator (AOM5 in Fig. 21) and a feedback loop from the signal of the beat note

photodiode.

3.2.4 Laser Source Phase Fluctuations

The intrinsic phase noise of the laser sources themselves is another important consideration in atom

interferometry. This noise arises from various physical processes within the laser cavity and can signifi-

cantly impact the overall phase stability of the Raman beams.

The phase noise of a laser is typically characterized by its frequency noise PSD or phase noise PSD. For

many lasers, the frequency noise PSD follows a characteristic shape, with higher noise at lower frequencies

(often with a 1/f dependence) and a white noise floor at higher frequencies.

To minimize the impact of laser source phase fluctuations, several strategies can be employed:

• Use of low-noise current drivers and temperature controllers to reduce technical noise sources.
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Figure 14: Laser phase noise comparison: Lasers phase noise power spectral density (PSD), taken from the

companies’ data sheets: Toptica DL Pro ECDL, Vescent DBR and RIO GRANDE.

• Implementation of active frequency stabilization techniques, such as locking to a high-finesse optical

cavity or an atomic transition.

• Use of low-noise laser technologies such as fiber lasers or solid-state lasers, although these often

require frequency doubling to reach the wavelengths used for Raman transitions in alkali atoms.

We opted for the last option and implemented a telecom fiber laser (RIO GRANDE6), as described

in Sec. 4.2.2. This laser allows for significantly lower phase noise relative to the external cavity diode

lasers (ECDL), like Toptica7 DL Pro, and distributed Bragg reflector (DBR), from Vescent, which we

had available in the lab. Fig. 14 shows a comparison between the different lasers in our lab.

3.3 Vibration Cancellation Methods

Vibration noise is a significant limiting factor in the sensitivity of atom interferometers, particularly

for precision measurements such as those in gravimetry and inertial sensing. To address this issue, we

implemented and explored a variety of vibration cancellation methods.

3.3.1 Passive Isolation

Passive isolation methods utilize mechanical systems to attenuate vibrations without requiring exter-

nal power or control systems. Our primary approach to vibration reduction involves a multi-stage passive

isolation system:

1. Optical Table: The experimental apparatus is built on an optical table (CleanTop 784 of TMC8)

equipped with pneumatic piston legs (Micro-g series). This provides basic vibration filtering through
6rio-lasers.com
7www.toptica.com
8www.techmfg.com
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Figure 15: Vibration noise measurements in the lab: The red full line represents the measurements on

top of the optic table, while the dashed blue line shows the measurements on the floor. (A) Plot of the vibration

noise power spectral density (PSD) taken with a Wilcoxon 731A accelerometer. (B) Vibration phase noise PSD,

calculated by multiplying the PSD measurement of (A) with the vibration transfer function of Eq. 58. The

interferometer phase noise σϕ,”vib” is calculated from the data using Eq. 54.

the following mechanism:

• The pneumatic pistons act as soft springs, creating a low-resonance frequency system.

• Vibrations at frequencies above this resonance are attenuated, as the table’s large mass resists

rapid movements.

• This system reduces the phase noise from about 25 mrad (measured on the lab floor) to ap-

proximately 4 mrad, as can be seen in Fig. 15.

2. Low-Frequency Isolation Stage: To further reduce vibrations, we employ a low-frequency

negative-stiffness isolation stage (LC-4U from Minus K9) placed on top of the optical table. This

creates a multi-stage isolation system that significantly improves vibration suppression through:

• Negative-stiffness mechanisms that cancel the positive stiffness of supporting springs, resulting

in a very low natural frequency.

• Vertical and horizontal vibration isolation, providing comprehensive protection against multi-

directional disturbances.

• No requirement for air or electricity, ensuring consistent performance and minimal mainte-

nance.

The combination of these passive isolation techniques reduces the vibration-induced phase noise to

about 0.5 mrad (Fig. 16), a significant improvement over the noise level without the isolation stage.
9www.minusk.com
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Figure 16: Vibration noise measurements in the lab: Plot of the vibration phase noise power spectral

density (PSD) as in Fig. 15. The red full line represents the phase without the LC-4U stage, while the dashed

green line shows the results with the stage.

3.3.2 Post-Processing Correction

In addition to passive isolation, we implement a post-processing correction method:

• A high-resolution, ultra-low-frequency accelerometer (Wilcoxon 731A10) is installed on the isolation

stage, adjacent to the retro-reflecting mirror.

• This accelerometer measures the mirror’s vibrations throughout the interferometer sequence.

• The recorded vibration data is then used in post-processing to remove the unwanted interferometer

phase caused by these vibrations.

The basic mechanism of this method is as follows: The accelerometer provides a time-resolved mea-

surement of the mirror’s motion. Using the known transfer function of the interferometer (Eq. 58), we can

calculate how these vibrations affected the interferometer phase (Eq. 54). This calculated phase shift is

then subtracted from the measured interferometer phase, effectively cancelling out the vibration-induced

errors. This technique allows us to further reduce the impact of residual vibrations not completely

eliminated by the passive isolation system.

3.3.3 Performance Evaluation

To evaluate the performance of our vibration cancellation methods, we conducted vibration noise

measurements in our lab using the Wilcoxon 731A accelerometer. The vibration phase was calculated

numerically using the vibration transfer function (Eq. 58). Figs. 15 and 16 show the measured vibration
10wilcoxon.com
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Figure 17: Vibration isolation system: Image of the vibration isolation system, showing the accelerometer

and mirror (mounted with a tilt stage) connected to the LC-4U stage via a brass weight. The LC-4U stage is

positioned on top of the optical table to provide multi-stage vibration isolation.

noise PSD and the corresponding phase noise PSD for different isolation configurations. These mea-

surements demonstrate that the passive isolation techniques enable us to achieve sub-mrad vibration

phase noise, which can be lowered even further by the post-processing technique. This is crucial for

high-precision atom interferometry experiments.

While our current vibration cancellation system (Fig. 17) has significantly improved the interferom-

eter’s performance, there is still room for further enhancement. Potential future improvements include

the implementation of active vibration isolation systems, which use sensors and actuators to dynamically

counteract detected vibrations. This can allow the development of real-time vibration compensation

techniques, where vibration measurements are used to adjust the interferometer in real time rather than

in post-processing. These advancements have the potential to further reduce vibration-induced noise,

pushing the boundaries of precision in atom interferometry measurements. However, all these improve-

ments are relevant only if we upgrade our MW synthesizer, as the current device causes phase noise of

about two orders of magnitude higher than the seismic noise with our passive isolation system (see Fig. 13

and 16).
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4 Experimental Setup

To implement and study the Point Source Interferometer (PSI) technique for high-precision rotation

sensing, we designed and constructed a comprehensive experimental apparatus. This section details the

key components of our setup, including the vacuum system, laser systems, and magnetic field generation.

The experimental system has evolved significantly from its initial conception. Originally, we began

with an apparatus designed for different experiments (like [75]). However, we later decided to build a

dedicated PSI setup based on a two-chamber vacuum system: a 2D magneto-optical trap (MOT) chamber

and a 3D-MOT and interferometer chamber. This design aims to achieve versatility in creating cold and

dense atomic clouds while incorporating all the necessary optical and magnetic fields required for a PSI

experiment.

4.1 Overview of the Apparatus

The core of our apparatus consists of two main vacuum chambers: a two-dimensional magneto-optical

trap (2D-MOT) chamber and a three-dimensional MOT (3D-MOT) chamber that also serves as the

interferometry region. This two-chamber design allows for efficient generation of a cold atom source and

subsequent manipulation for interferometry. Fig. 18 illustrates the overall layout of the experimental

setup.

The 2D-MOT chamber functions as a source of cold 87Rb atoms, producing a beam of slow atoms

directed toward the 3D-MOT chamber. We implement a 2D-MOT+ configuration [76], which includes

additional pushing and retarding beams along the atomic beam axis, allowing for enhanced flux and

better control over the longitudinal velocity of the atoms.

The 3D-MOT chamber serves a dual purpose. Initially, it captures and further cools the atoms

from the 2D-MOT beam. Subsequently, it acts as the interferometry region where the PSI sequence is

performed. This chamber incorporates several key components:

• A 3D-MOT setup for atom trapping and cooling.

• High-gradient magnetic coils for enhanced atom confinement.

• Optical molasses configuration for sub-Doppler cooling.

• Raman beams for coherent manipulation of the atomic states.

• Imaging system for detection and analysis of the interference fringes.

A unique feature of our apparatus is the integration of high-gradient magnetic coils inside the 3D-MOT

vacuum chamber. This design allows for strong atom confinement while minimizing power consumption

and heat generation, enabling a well-localized cold atom cloud for the PSI experiment.

The entire setup is controlled by a comprehensive laser system, providing the necessary frequencies for

cooling, trapping, and coherent manipulation of the atoms. Precision magnetic field control and careful

design of the optical paths ensure the requisite stability and coherence for high-sensitivity interferometry.
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Figure 18: Model and photograph of the experimental apparatus: (A) SolidWorks (SW) model depicts

the experimental vacuum system with mounted optics. The right side shows the 2D-MOT, which includes optical

elements receiving light from polarization-maintaining (PM) fibers. The 2D-MOT system cools atoms in two

axes, while at the third axis, atoms are pushed by another laser beam and reach the 3D-MOT chamber, which is

located on the left side of the picture. The 3D-MOT vacuum chamber includes optics designated for the 3D-MOT

configuration, optical molasses, optical pumping, the imaging system, and the Raman beams. (B) A picture of

the experimental system is provided. On the left is the 2D-MOT vacuum system, which supplies the cold-atom

flux to the 3D-MOT located on the right of the picture.

Having outlined the overall structure of our apparatus, we now turn to a detailed description of its

key components, beginning with the laser systems that form the heart of our experimental setup.

4.2 Laser Systems

Our experiment requires precise control of laser frequencies and powers to manipulate 87Rb atoms

for cooling, trapping, and interferometry (Fig. 19). We employ two main laser systems: two distributed

Bragg reflector (DBR) lasers for the MOT operations and a telecom laser for Raman transitions.

4.2.1 MOT Lasers

A MOT system is based on two light fields, usually called ”Cooler” and ”Repumper”. The Cooler

beam is tuned slightly below the resonant frequency of an atomic transition, exerting a force on the

atoms that reduces their velocity. The Repumper beam, on the other hand, counteracts the depletion

of the ground state population caused by the cooling process, ensuring a continuous cycle of absorption

and emission of photons, thereby maintaining cooling efficiency. Together, these beams create optical

molasses, slowing down atoms and trapping them at the center of the magnetic field gradient.

Two DBR laser diodes (Vescent D2-100-DBR) form the core of our MOT laser system, as presented

in Fig. 20. Each diode provides an output power of approximately 200 mW at 780 nm. The first DBR

laser (Repumper) generates both the repumping and optical pumping frequencies. It is precisely tuned

to the D2-line |F = 1⟩ → |F ′ = 1⟩ transition and is stabilized using an error signal obtained through

polarization spectroscopy, with the assistance of a Vescent D2-125 servo. The second DBR laser (Cooler)
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Figure 19: Laser frequencies used in the experiment: Not-to-scale diagram of the 87Rb D2 transition

hyperfine structure [77], with the necessary laser frequencies for the experiment presented. The Cooler laser is

detuned by ∆ = nΓ, where Γ ≃ 2π · 6 MHz is the linewidth of the 52P3/2 level, from the F ′ = 3 hyperfine level.

The Raman lasers are precisely detuned by the hyperfine separation of the 87Rb, ∆HF S = 6.834 GHz from each

other, and are red detuned by 200 MHz from the 52P3/2 manifold.

is used for generating the cooling frequency. It is tuned slightly below the D2-line |F = 2⟩ → |F ′ = 3⟩

transition of 87Rb. This laser is phase-locked to the second DBR laser using a phase-lock loop system

implemented with a Vescent D2-135 module. This approach allows a temporal tuning of the frequency of

the Cooler laser relative to the locked Repumper laser, without the need of extra electro-optic devices, for

the different stages of cooling, like optical molasses. To meet the total power requirements for cooling, we

use a tapered amplifier (TA, TPA780P20 by Thorlabs11)) to boost this laser’s output. This amplification

results in a total power of approximately 2 W.

The Cooler laser is split and coupled into five polarization-maintaining (PM) fibers for various func-

tions in the 2D and 3D-MOT systems, to be described more thoroughly in Sec. 4.4. Meanwhile, the

Repumper laser is co-injected into three of these fibers (Fig. 20). As the cooling stage is only necessary

for the preparation of the atomic cloud for the PSI experiment, we use mechanical shutters to stop the

lasers from reaching the system when they are not required.

As specified, the Repumper laser is also used for the preparation of the initial quantum state of the

atoms in the experiment by optical pumping. For this goal, we use an acousto-optic modulator (AOM)

to downshift its frequency by 72 MHz, tuning the beam to the D2-line |F = 1⟩ → |F ′ = 0⟩ transition.

The AOM is also used as a fast shutter of the light field.
11www.thorlabs.com
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Figure 20: Schematic of the MOT lasers system: The system consists of two DBR lasers (D2-100-DBR by

Vescent) primarily used to provide the 2D and 3D-MOT Cooler (red) and Repumper (blue) beams. The optical

pumping beam is split from the locked Repumper laser, passing through an acousto-optical modulator (AOM),

which downshifts its frequency to the D2-line |F = 1⟩ → |F ′ = 0⟩ transition. The Cooler, locked by a phase-lock

on the Repumper laser, then passes through a tapered amplifier (TA). It is then coupled to five PM fibers for

various functions in the 2D and 3D-MOT systems.

4.2.2 Raman Laser System

For the stimulated Raman transitions required in the interferometer sequence, we employ a narrow

linewidth communication laser (RIO GRANDE12) operating at 1560 nm. This choice is motivated by

the need for low phase noise in the interferometric signal (Sec. 3.1.1). The 1560 nm output is frequency-

doubled to 780 nm using a high-stability bow-tie power enhancement cavity for critical second harmonic

generation (SHG) from Agile Optics13. This configuration provides a 780 nm beam with a total power of

up to 1 W and an estimated linewidth of approximately 20 kHz.

We lock this laser to the D2-line |F = 2⟩ → |F ′ = 1−3CO⟩ transition (where CO refers to a crossover

transition) using FM spectroscopy. The error signal is processed using a lock-in amplifier, and the locking

is achieved through a home-built proportional-integral-derivative (PID) controller.

The Raman laser system is configured to produce a Λ configuration (Sec.,2.2). This configuration

consists of two phase-coherent beams with a frequency separation matching the 87Rb ground state hy-

perfine splitting (approximately 6.834 GHz). Both beams are red-detuned by 200 MHz from the 52P3/2

manifold, as illustrated in Fig. 21. This is achieved through the use of acousto-optic modulators (AOMs)

and an electro-optic modulator (EOM). The EOM plays a critical role in creating hyperfine splitting

between the two beams. The EOM generates frequency sidebands based on its microwave (MW) driving

frequency. To suppress unwanted frequencies, we employ injection-locking to a slave laser. This slave
12rio-lasers.com
13www.agile-optic.com
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Figure 21: Schematic of the Raman laser system: The 1560 nm output is frequency-doubled and then

split into two Raman beams and an imaging beam. The first Raman beam passes through an AOM and EOM

for frequency control and is then injected into a slave laser for sideband filtering and power amplification. The

second Raman beam is frequency-shifted and phase-controlled by another AOM. Both beams are then combined

and coupled into a polarization-maintaining (PM) fiber for delivery to the 3D-MOT chamber. A portion of each

beam is used for phase-locking to minimize interferometer phase noise.

laser is tuned to have its gain resonance at the desired frequency, which in our scheme corresponds to

the D2-line |F = 1⟩ → |F ′ = 1⟩ transition. We use a control loop to ensure the stability of the gain

resonance frequency by controlling the slave-laser’s diode current. The injection locking serves a dual

purpose. Firstly, it suppresses the unwanted frequencies created by the EOM through a coherent process.

Secondly, it acts as an amplifier. An input of 10µW results in a total output power of approximately

150 mW.

The output laser from the injected slave is then combined with the second Raman beam at a frequency

that matches the D2-line |F = 2⟩ → |F ′ = 1⟩ transition. This is achieved via a polarized beam splitter

(PBS). A small portion of these beams is taken for a phase-lock loop (PLL), using a Vescent D2-135

system and an AOM to correct the phase of the second Raman beam (depicted as AOM 5 in Fig. 21).

The rest of the beams power is passed through another AOM (depicted as AOM 6 in Fig. 21), which

downshifts the Raman lasers frequencies to be red-detuned from the 52P3/2 manifold, and then injected

into a PM fiber. The AOM is also used as a fast shutter to control the duration of the Raman pulses for

the interferometer sequence (Sec. 2.3).

The doubled telecom laser is also used for the absorption imaging stage, where a small portion of

its power is shifted using an AOM to be resonant with the D2-line |F = 2⟩ → |F ′ = 3⟩ transition. It

is then combined with the two Raman beams and injected into the same fiber to allow vertical imaging

(Sec. 4.4). We also use a scheme where the imaging is injected into a different fiber for side imaging.
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Figure 22: Detailed model of the system without the optics: (A) Side view and (B) a top view. Key

components: (1) 2D-MOT glass cell connected to the hexagonal vacuum chamber (2). (3) Ion pump for the

2D-MOT chamber and (4) the isolation valve to connect to a turbo pump station. (5) Port aligner and gate

valve that connects between the two chambers. (6) Turbo pump and (7) ion pump of the science chamber. (8)

Titanium sublimation pump. (9) Ion gauge.

Having described the laser systems in detail, we now focus on the vacuum infrastructure that provides

the ultra-high vacuum environment necessary for our cold atom experiments.

4.3 Vacuum Systems

Our vacuum system consists of two chambers: a 2D-MOT chamber for generating a cold atom flux

and a 3D-MOT chamber for atom trapping and interferometry, which also serves as the science chamber.

Fig. 22 provides a detailed SolidWorks model of the vacuum system.

4.3.1 2D-MOT chamber

The 2D-MOT system is based on the design by Chaudhuri et al. [76] and includes a rectangular

anti-reflective (AR) coated optical glass cell and a metal ultra-high vacuum (UHV) cell. This chamber is

connected to a spherical hexagonal vacuum chamber (Kimball Physics14) via a CF 40 flange. A Rubidium

atom dispenser, an isolation valve, and a vacuum pump are attached to the hexagon using separate CF

16 ports. The 2D-MOT is configured to operate in a 2D-MOT+ mode, which incorporates two counter-

propagating laser beams (pushing and retarding) along the third dimension, in addition to the standard

cooling and trapping in two dimensions. This configuration, to be elaborated further in Sec. 4.4, enhances

the atomic flux and allows better control over the longitudinal velocity of the atoms.

The 2D-MOT chamber has its own vacuum system, including an Agilent15 VacIon 2 L/s ion pump

and the option to connect a turbo pump unit via a CF 16 isolation valve. This ensures that the 2D-MOT

vacuum system is completely independent of that used for the 3D MOT in the science chamber.
14www.kimballphysics.com
15www.agilent.com
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The 2D-MOT chamber is connected to the 3D-MOT chamber via a differential pumping tube (DPT),

a flexible port aligner, and a gate valve. The DPT enables the transfer of atoms to the 3D-MOT by

connecting the two regions, maintaining a pressure differential of about four orders of magnitude. The

port aligner and a gate valve allow the isolation of the 2D-MOT chamber from the science vacuum

chamber and enable angle adjustments crucial for atomic beam alignment.

The DPT has a small entrance hole diameter of 1.5 mm, which gets larger in eleven steps, with each

increasing the diameter by 0.5 mm. This results in an exit hole of 7 mm in diameter. This setup allows

can tolerate a high pressure of 10−8 − 10−7 Torr in the 2D-MOT chamber, while achieving a background

pressure of 10−11 − 10−12 Torr in the main chamber.

4.3.2 3D-MOT chamber

The 3D-MOT chamber utilizes a Kimball Physics hexagon equipped with eight CF 40 ports and two

CF 100 ports. This chamber is designed to capture the atom flux from the 2D-MOT and perform the PSI

sequence. It incorporates optics for the MOT, optical molasses, optical pumping, and Raman transitions.

The chamber is also connected to standard vacuum instruments such as an ion pump, ion gauge, titanium

sublimation pump, and a gate valve.

This chamber is designed to operate at a low pressure of approximately 10−11 − 10−12 Torr, to enable

a low probability of background gas collisions to affect the interferometer. We use the 2D-MOT as the

atom source instead of the more traditional alkali dispensers. We installed Rb dispensers in the 3D-MOT

chamber as a backup in case the 2D-MOT system encounters problems in the future. To achieve the

required low UHV regime, we installed a SAES16 NexTorr D200 pump in the science chamber. This

pump combines an ion pump with a non-evaporable getter (NEG) pump, providing efficient pumping for

a wide range of gases. When necessary, such as when particles no longer adhere to the surfaces within the

vacuum chamber and cause a slight pressure increase, a titanium sublimation pump (TSP) is used. The

TSP coats the vacuum surfaces with titanium, which acts as a getter pump by increasing the reactivity

and sticking probability of particles to the surfaces, thereby maintaining the UHV conditions. An ion

gauge is used to control the vacuum level in the chamber.

This comprehensive vacuum system, combining differential pumping, ion pumps, NEG technology, and

titanium sublimation, ensures the ultra-high vacuum conditions necessary for precise atom interferometry

experiments. These ultra-high vacuum conditions are crucial for minimizing collisions between the cold

atoms and background gas particles, which could disrupt the coherence of the atom interferometer.

4.4 Optical Setup

The optical setup is a crucial component of our experimental apparatus, enabling precise control and

manipulation of the atomic ensemble throughout the various stages of the experiment. This section details

the optical configurations used in both the 2D-MOT chamber and the science chamber, highlighting how

each component contributes to atom cooling, trapping, and interferometry. The careful design of these
16www.saesgetters.com
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optical systems ensures the efficient atom flux generation, state preparation, and coherent manipulation

necessary for high-precision rotation sensing, using the PSI technique.

4.4.1 2D-MOT+ Optics

The 2D-MOT+ configuration [76] is an enhanced version of the standard 2D-MOT, designed to

improve atomic flux and provide better control over the longitudinal velocity of the atoms. This setup

incorporates cooling and trapping in two dimensions, with additional pushing and retarding beams along

the third dimension.

The optical path for the 2D-MOT+ begins with a split polarization-maintaining optical fiber delivering

both Cooler and Repumper beams, as described in Sec. 4.2. These beams are then shaped and directed

into the vacuum chamber as follows: Component 1 in Fig. 23 refers to this fiber, connected to two

collimators on each side of the cell (component 2 in Fig. 23). The collimators create an output wavefront

of elliptical cross-section (3 × 1 cm2) and circular polarization via passage through a quarter wave-plate.

This shaped beam is sent into the vacuum cell through two non-polarizing beam-splitters (NPBS) and a

mirror (component 3 in Fig. 23). This results in approximately homogeneous beam intensity inside the

chamber, particularly in the central region of interest. To accomplish the MOT, the circularly polarized

beam entering the chamber is reflected by a retro-reflecting prism (component 5 in Fig. 23). Fig. 24 gives

a detailed scheme of the optical path.

To achieve a 2D-MOT+ configuration, in addition to the standard 2D-MOT cooling and trapping in

two dimensions, we incorporate two counter-propagating laser beams called the pushing and retarding

beams along the third dimension. The counter-propagating configuration is achieved by the mirror around

the DPT. These beams are red-detuned and have different optical powers. As a result, the atoms are

cooled and simultaneously propelled toward the more powerful beam. This allows us to increase the

number of atoms in the atomic beam and to control its longitudinal velocity.

The retarding beam is also used as an ”optical plug” to prevent atoms from traversing the 2D-MOT

chamber and the 3D-MOT chamber after the 3D-MOT loading phase ends. This optical plug is not

perfect, but it does significantly lower the atomic flux. A mechanical shutter is then used to prevent the

light from the Cooler and Repumper lasers from reaching the 2D-MOT fiber, thereby stopping the MOT

process in this chamber. Overall, it ensures that a negligible number of atoms pass between the chambers

in the critical stage of the interferometer.

4.4.2 Science Chamber Optics

The science chamber houses multiple optical systems essential for the various stages of our experiment.

These include:

• A 3D-MOT setup for further cooling and trapping of atoms from the 2D-MOT.

• Optical molasses beams for sub-Doppler cooling.

• Optical pumping beams for state preparation.
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Figure 23: Detailed model of the 2D-MOT system: (A) Top view of the 2D MOT system and (B) a section

view from the center of the 2D MOT system. Key components: (1) Optical fiber guides the laser beam from

the optical system to the 2D MOT. The beam consists of two wavelengths, for the Cooler and the Repumper.

(2) Collimator that creates the needed laser beam polarization and shape. (3) Two non-polarizing beam-splitters

(NPBS) and a mirror to guide the beam into the vacuum chamber. (4) The 2D-MOT glass cell. (5) A retro-

reflecting prism to reflect the beam after it passes through the cell. (6) The aperture of the differential pumping

tube (DPT). A circular mirror is mounted around the DPT to reflect the retarding beam at a 90° angle. (7)

Entrance location of the pushing and the retarding beams. (8) The Rb dispenser.

• Raman beams for coherent manipulation in the interferometer sequence.

• Imaging beams for detection.

Each of these systems requires precise alignment and polarization control to achieve the desired

manipulation of the atomic ensemble. We will now describe the optical path for each of these systems in

detail.

The Raman beams, along with the imaging beam, are delivered to the system through a PM fiber

(Fig. 21). A collimator creates an output beam with a diameter of 17 mm. These beams are then

combined with the z axis 3D-MOT beam (transferred by a separate PM fiber, Fig. 20) using a 30:70

NPBS. Half waveplates before the NPBS and a quarter waveplate after it ensure the desired polarizations

of the beams inside the vacuum chamber. The combined beams pass through the center of the vacuum

cell. Upon exiting the chamber, the beams enter another quarter waveplate and a polarization beam

splitter (PBS). This arrangement reflects out the imaging beam and one of the Raman beams, while

transmitting the MOT beam and the other Raman beam towards a retro-reflecting mirror. This is based

on the scheme described in Sec. 2.2.2. The retro-reflecting mirror, mounted on a rotating stage, simulates

system rotation without rotating the entire interferometer [78, 79]. After passing through the PBS and

the quarter waveplate again, these beams are redirected by the mirror back into the vacuum chamber

with the correct polarization. Fig. 25A illustrates the beam paths along this axis.

The remaining two MOT beams complete the standard six-beam MOT configuration. They enter

the chamber through CF 40 windows, traverse the chamber center, and exit from opposite windows.

Each beam is delivered via a split PM fiber and passes through a collimator with an integrated quarter
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Figure 24: Schematic representation of the optical beam path of the 2D-MOT system: The elliptical

(3 × 1 cm2), circularly polarized (σ+) beam from the collimator (see Fig. 23) is directed into the 2D-MOT’s glass

cell. To illuminate the entire length of the cell, we pass the beam through two non-polarizing beam-splitters

(NPBS), each reflecting some of the power into the cell (splitting ratio of R = 30%; T = 70%). These are followed

by a mirror that fully reflects the remaining power, thus the total power is spread homogeneously over the whole

cell. After passing through the cell, the light is retro-reflected from a long prism, which causes the circular polarity

of the light to flip from (σ+) to (σ−) due to the double reflection through the prism.

waveplate. After it exits the chamber, it passes through another quarter waveplate and is retro-reflected

by a mirror. This setup allows the beams to re-enter the chamber with the desired polarization for a

MOT.

The optical pumping beam is introduced along one of the MOT beam axes, combined with the MOT

beam using a PBS. Fig. 25B illustrates the optical arrangement along the axis containing the optical

pumping beam and one MOT beam.

In summary, our optical setup is carefully designed to facilitate all stages of the PSI experiment.

The 2D-MOT+ configuration provides a high flux of cold atoms, while the science chamber’s optical

systems enable precise control and manipulation of the atomic ensemble. This comprehensive optical setup

allows us to achieve the ultra-cold temperatures, coherent manipulation, and high-precision measurements

necessary for rotation sensing using atom interferometry.

4.5 Magnetic Coils

Our experimental apparatus incorporates several magnetic coil systems, each serving specific functions

in the atom trapping, cooling, and manipulation processes. These include coils for the 2D-MOT and 3D-

MOT, as well as optical pumping and compensation coils, as shown in Fig. 26.

The 2D-MOT chamber employs a rectangular anti-Helmholtz coil configuration to generate the re-

quired quadrupole magnetic field. These coils are wound around a metal frame slightly larger than the

glass cell dimensions. The coils produce a two-dimensional magnetic field gradient, with the zero-field line
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Figure 25: Schematic representation of the optical setup of the science chamber: (A) The optical

setup is arranged along the gravity axis. The MOT beam and the Raman beams are combined using a 30:70

non-polarized beam splitter (NPBS) before entering the chamber and the experimental region. The polarization

of each beam in the lab reference system, at every position, is indicated in the figure. (B) The optical setup along

one of the transverse axes. Here, the MOT beam and the optical pumping beam are combined using a polarized

beam splitter (PBS). A similar optical setup is arranged along the other transverse axis to complete the 6-beam

MOT, but without the optical pumping beam.

along the atomic beam axis. This configuration is crucial for 2D-MOT operation, as it confines atoms

radially while allowing them to propagate along the axis with a near-zero magnetic field, facilitating

efficient atom flux generation.

A unique feature of our setup is the integration of high-gradient coils inside the 3D-MOT vacuum

chamber. This design, shown in Fig. 27, allows for strong atom confinement while minimizing power

consumption and heat generation. The coils are arranged in an anti-Helmholtz configuration and are

designed to generate magnetic field gradients of up to 160 G/cm while operating at relatively low currents

of 20 A. The coils have an inner diameter of 1.8 mm with a total of 70 loops, resulting in a total resistance

of approximately 0.065 Ohm.

These coils are made from UHV-compatible materials, with the coil holders fabricated from oxygen-

free copper for optimal heat conduction. We opted for copper due to its non-magnetic properties and

high heat conductivity. The contact area between the copper and the chamber is designed to be as large

as possible to facilitate heat dissipation. This setup dissipates only 25 W of heat per coil - a significant

improvement over conventional setups that typically dissipate 4.8 kW [80].

For the optical pumping, a pair of Helmholtz coils is aligned with the optical pumping beam axis to

establish a quantization axis for the atoms during the optical pumping process. These coils generate a

uniform magnetic field in the pumping region, ensuring efficient state preparation of the atoms before the

interferometry sequence. The uniform field is necessary to define a quantization axis, which allows for
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Figure 26: Model of the magnetic coils in the system: A cross-section view at the center of the 3D-

MOT and 2D-MOT chambers. The coil structures for the 2D-MOT, the 3D-MOT’s high-gradient coils, and the

compensation coils, are indicated. The optical pumping coils are not shown in this view.

selective excitation of specific magnetic sublevels, crucial for preparing atoms in the desired initial state

of |F = 1,mF = 0⟩ for the interferometer.

Additionally, three pairs of Helmholtz coils are arranged orthogonally around the science chamber to

counteract external constant magnetic fields. These compensation coils allow us to cancel out ambient

magnetic fields, providing a well-controlled magnetic environment for our atomic ensemble. This is

particularly important during the interferometry sequence, where external magnetic fields can introduce

unwanted phase shifts and reduce the coherence time of the atomic superposition states.

The careful design and implementation of these magnetic coil systems ensure precise control over the

magnetic fields throughout all stages of our experiment, from initial atom trapping to the final interfer-

ometry measurements. The combination of external coils for global field control and in-vacuum coils for

high gradients provides the versatility and precision required for our atom interferometry experiments.

41



Figure 27: High-gradient coils design: A cross-section view at the center of the 3D-MOT chamber. The

bronze-colored structures are the coil holders. Positioned atop the vacuum chamber is a homemade connector

CF-100 to CF-40, facilitating connection to the homemade coil holder apparatus. The coils, which have an inner

diameter of 1.8 mm, are looped 70 times around the short waist of each coil holder.

5 Squeezed Point Source Interferometer

The point source interferometer (PSI) has proven to be a powerful technique for rotation sensing using

cold atoms. Here, we propose a squeezed point-source interferometer (SPSI) to increase the dynamic range

of the interferometer and its sensitivity without increasing the operation time or, alternatively, achieving

the standard sensitivity with a smaller device. Moreover, a longstanding and sought-after goal is to

miniaturize rotation sensing [23, 58, 81, 82], and here we show that the SPSI opens the door to this

potential - and even enables a chip-scale device.

To achieve these improvements, we propose a novel approach that manipulates the atomic ensemble’s

phase-space distribution. Our method is based on adding a stage of pre-acceleration where the initial cloud

goes through phase-space squeezing. Phase-space squeezing has been discussed extensively regarding

delta-kick cooling [83–87], in which the spread in momentum is decreased at the expense of increasing

the spread in position. In contrast, here, we propose to increase the spread in momentum while the

spread in position is effectively reduced. As we show, integrating an inhomogeneous repulsive force to

accelerate atom motion before the interferometer sequence, can substantially enhance the operational

efficiency and sensitivity of a PSI device. We show that the figures of merit are enhanced by several

orders of magnitude. Under a definition of compactness, the enhancement in performance is about four

orders of magnitude.

An example of the effect of phase-space squeezing on the interferometer is illustrated in Fig. 28.

Squeezing leads to both an increase in the number of oscillations within the cloud size and an increase

in the contrast.

In the following subsections, we will present a detailed examination of the SPSI method. We begin

with an analytical derivation of the key principles and equations governing the SPSI. This is followed by
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Figure 28: Principle of the squeezing effect in the interferometer: The atomic phase-space distribution

is shown for the standard PSI interferometer (blue) and the SPSI interferometer (orange), at two different times:

(A) at the start of the interferometer sequence, tacc, occurring just after the acceleration stage due to the repulsive

potential pulse, and (B) at the imaging time, tfinal, following the complete interferometer sequence. The phase

space distribution at tfinal becomes tilted due to expansion, and the velocity-dependent interferometer phase

introduces an oscillatory phase-space density upon detecting a single state. As shown at the bottom of (B),

the latter oscillation produces a spatial density oscillation, which, upon being projected onto the position axis,

forms the observed signal (output) of the interferometer. In the SPSI, when the initial phase-space distribution

is squeezed with increased velocity, the subsequent expansion results in a phase-space distribution having a high

aspect ratio. Upon projection onto the position axis, the SPSI signal shows improvement with more oscillations

and an improved contrast.

a description of our numerical simulations, which provide insights into the behavior of the system under

various conditions. Finally, we conduct a comprehensive performance analysis, comparing the SPSI to

conventional PSI techniques and exploring its potential for enabling either enhanced performance in

standard-size devices or maintaining performance while miniaturizing to a chip-scale device.

5.1 Analytical Derivation

In this subsection, we present the analytical derivation of the SPSI method, beginning with the fun-

damental principles of the repulsive potential and its effects on atomic motion. Integrating a repulsive

potential that varies spatially to accelerate atom motion before the interferometer sequence, can sub-

stantially enhance the operational efficiency and sensitivity of a PSI device. Repulsive forces have been

discussed in numerous contexts [88–93], but in this context, the repulsive potential serves to enlarge the

area enclosed by the interferometer arms while maintaining and even improving the crucial position-

velocity correlation. This is achieved by applying a repulsive potential for an acceleration time tacc. Let

us define the coordinate system such that the z axis is along the direction of the splitting and recombining

laser beam. We may apply a quadratic repulsive potential along one or two axes transverse to z, but for

the sake of simplicity, we describe only the dynamics along the x coordinate. If the repulsive potential

is quadratic Vrep(x) = −(1/2)mω2x2, where m is the atomic mass, then after the acceleration stage, the

initial coordinates in the direction x of an atom are transformed as

x(tacc) = cω · x(0) + sω · vx(0)/ω , vx(tacc) = ωsω · x(0) + cω · vx(0) , (59)
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where cω = cosh(ωtacc) and sω = sinh(ωtacc).

In Sec. 5.1.1 we show that the phase-space distribution that forms after the repulsive pulse is exactly

equivalent to the distribution that forms after free propagation for an effective duration teff, when the

initial distribution is squeezed with effective position uncertainty σ̃x0 = σx0/η and velocity uncertainty

σ̃v0 = ησv0, with the squeezing parameter being

η ≡

√
c2

ω + ω2σ2
x0

σ2
v0

s2
ω, (60)

and the effective time is given by

teff = sωcω

ωη2

(
1 + ω2σ2

x0
σ2

v0

)
. (61)

This squeezing parameter η characterizes the degree of phase-space manipulation achieved by the

repulsive potential. If ωtacc ≪ 1 and γ ≡ ωσx0/σv0 ≪ 1 then η ≈ 1 and teff ≈ tacc, such that the

acceleration phase is ineffective. Conversely, if ω ≫ σv0/σx0 (γ ≫ 1) then even if the acceleration time

is not long, such that ωtacc ≲ 1, then the squeezing parameter is large η ∼ γωtacc and the effective

expansion time is teff ∼ tacc/(ωtacc)2. If the acceleration time is long, such that ωtacc > 1 the squeezing

becomes exponentially large such that η ≈
√

1 + γ2eωtacc and teff ≈ 1/ω is inversely proportional to the

repulsive frequency.

We now focus on the practical implementation of the repulsive potential using a blue-detuned laser

beam. The repulsive potential can be generated by a laser beam blue-detuned from the atomic resonance

by ∆ > 0. The effective AC Stark-shift is [74]

Vac(r⃗) = ℏ
ΩR(r⃗)2

4∆
= 3πΓ

2k3
0c

I(r⃗)
∆

, (62)

where ΩR is the local Rabi frequency, k0 = 2π/λ0 is the optical transition wave-vector, Γ is the sponta-

neous emission rate, I(r⃗) is the light intensity, and c is the speed of light. The inverse harmonic repulsive

potential could be implemented by the quadratic intensity profile near the center of a Gaussian beam

propagating along the z direction. However, a more efficient acceleration may be achieved by designing

a fully quadratic beam shape. Here, we consider acceleration in the x direction induced by a laser beam

propagating along the y direction and having a homogeneous profile in the z direction in the volume

containing the atom cloud. The light beam profile is I(x, z) = I0(1 − x2/x2
0) for |x| < x0, |z| < z0/2 and

zero otherwise, where I0 is the peak intensity and 2x0z0 is the beam cross-section. The peak intensity

equals I0 = 3P/4x0z0, where P is the beam power, and the potential frequency becomes

ωHarmonic =

√
9πΓP

4mk3
0c∆x3

0z0
. (63)

This equation relates the potential frequency to the beam parameters, allowing us to optimize the

squeezing effect. The harmonic profile is quite advantageous for achieving a large squeezing factor before

the atoms reach the region with a repulsive potential. For example, for the parameters introduced in

Fig. 31, ωHarmonic = 2π · 1220 Hz.

The optical repulsive potential has the consequent effect of heating the atoms due to scattered pho-

tons [74]. Along the direction of beam propagation, the atoms gain momentum in correlation to the
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spatial intensity I(r⃗), which can be compensated by shifting the initial cloud position or, if necessary,

by employing a counter-propagating beam. In addition, as will be explained in Sec. 5.1.2, the scattering

induces a random walk in velocity space in all directions, potentially enlarging the effective initial cloud

size, σ̃x0, and consequently decreasing the upper detection limit Ωmax (Eq. 35). Under the limitations

we have taken for the laser power and typical parameter values, this effect reduces Ωmax, e.g., by
√

2

for the parameters of Fig. 31. This effect can be reduced to a negligible level by improving the beam

parameters, for example, by equally increasing the beam power P and the detuning ∆. More details

about the heating process can be found in Sec. 5.1.2. One could also explore using different types of

potential, such as magnetic gradients, to mitigate heating.

5.1.1 Free Evolution of a Gaussian Phase-Space Distribution

To fully understand the SPSI method, it is essential to examine the evolution of the atomic cloud’s

phase-space distribution. In a two-dimensional phase space of position x and velocity v, a Gaussian

distribution in the form of an exponent of a bi-quadratic expression in x and v remains Gaussian in

either free evolution or evolution in a quadratic potential. This conservation of the Gaussian form follows

from the fact that any linear transformation of a bi-quadratic expression of two variables remains bi-

quadratic under such a transformation. Any Gaussian form where the distribution is centered around

x = 0 and v = 0 can be written in the form

ρ(x, v, t) ∝ e−(x−vt)2/2σ2
x0e−v2/2σ2

v0 , (64)

which is a distribution that evolves under free propagation from an uncorrelated initial distribution at

t = 0 with a spatial uncertainty σx0 and velocity uncertainty σv0. This implies that any Gaussian

distribution in phase space can be obtained by free propagation over an effective time, teff, starting from

an uncorrelated distribution. This is the way that the effective squeezed distribution with a squeezing

factor η is obtained from the distribution that evolves under the repulsive inverse harmonic potential

after acceleration over a time tacc. It is easy to acknowledge these properties by noting that a Gaussian

distribution in phase space has an elliptical shape in the x− v plane, and any ellipse can be transformed

into an ellipse whose axes are aligned along the main axes by a proper rotation transformation.

The quadratic expression in the exponent can also be written in an alternative form that emphasizes

the position-velocity correlations in the distribution:
(x− vt)2

2σ2
x0

+ v2

2σ2
v0

= x2

2σ2
f

+ (v − x/T )2

2σ2
vt

, (65)

where σf is the overall spatial width of the cloud, σvt is the local velocity spread at any given point x

and T is an effective time of evolution. The latter three parameters can be expressed in terms of the

parameters σx0 and σv0 of the initial uncorrelated distribution and the time of evolution as

σ2
f = σ2

x0 + σ2
v0t

2, σvt = σx0

σf
σv0 , T = t

(
1 − σ2

x0
σ2

f

)−1

. (66)

The expression in Eq. 65 inside the exponent represents a distribution with correlation between posi-

tion and velocity, such that at a given point x, the width of the velocity distribution is given by σvt, which
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is reduced relative to the initial uncertainty of the velocity by a factor representing the ratio between the

initial cloud size and the final cloud size. It is evident that the phase-space volume is conserved during

the evolution, as σfσvt = σx0σv0.

If, at a given time, a distribution has the form of Eq. 65, it is possible to express it as a distribution

that started at a time t before this time as an uncorrelated distribution of the form of Eq. 64. The

variables σx0, σv0 and t can then be expressed in terms of σf , σvt and T . In particular, we find

σx0 = σvtT√
1 + σ2

vtT
2/σ2

f

, (67)

and the other two parameters are easily obtained from the latter.

Understanding this free evolution is crucial for the SPSI method, as it allows us to predict and control

the atomic cloud’s behavior throughout the interferometer sequence.

5.1.2 Effect of Heating

Heating effects are an important consideration in the SPSI method, as they can potentially degrade

the squeezing effect and impact the interferometer’s performance. Let us consider a situation where an

initial uncorrelated distribution has evolved in free space over a time teff and given rise to a correlated

distribution of the form of an exponent of Eq. 65 and then the width of the local velocity distribution σvt

has grown due to quick homogeneous heating. This means that after the heating, the parameters σf and

T have remained the same as before the heating, while σvt has grown due to heating. It is now possible

to use Eq. 67 for determining the effective initial uncorrelated distribution that would have led by free

propagation to the final distribution after heating.

If the heating is very strong, such that after the heating σvt > σf , then the projected initial cloud

size at the starting point of the evolution is σx0,eff ≈ σf , and the subsequent evolution of the cloud will

be similar to one that starts with the final size upon heating. This means that the heating has erased the

position-velocity correlation inside the cloud. Conversely, if the local velocity distribution has not grown

considerably during the heating relative to the local velocity uncertainty without heating, then the effect

of heating on the consequent evolution is negligible.

In the case of a squeezed phase-space distribution with squeezing factor η ≫ 1 and a cloud size σf

after the acceleration that is not much larger than the real initial cloud, the local velocity uncertainty is

given by σvt = ησv0 · (σx0/η)/σf ∼ σv0, which is about the same as the real velocity uncertainty before

the squeezing, while the effective initial velocity uncertainty is larger by a factor of η. Let us now assume

that after the heating, the local velocity spread grows as σvt → σvt,tot =
√
σ2

vt,0 + σ2
v,h, where σvt,0 is

the local velocity spread before heating and σv,heat is the added spread due to heating. Considering

the acceleration procedure and taking the free evolution time before heating to be teff and assuming

σf ≫ σx0,eff, the effective initial cloud size projected back after heating becomes

σh
x0,eff ≈ σvt,totteff =

√
σ2

x0,0 + σ2
v,ht

2
eff = σvt,tot

σvt,0
σx0,0 , (68)

where σ0
x0,eff = σx0/η is the initial cloud size without heating and σh

x0,eff is the projected initial cloud size
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after heating. Here, we assumed that the ratio between the local velocity spread after heating and before

heating is much smaller than the squeezing factor η.

In summary, our analytical derivation provides a comprehensive framework for understanding the

SPSI method. We have shown how the repulsive potential leads to phase-space squeezing, characterized

by the squeezing parameter η and effective time teff. We have also examined the practical implementation

using a blue-detuned laser beam and considered the effects of free evolution and heating. These analytical

insights provide the basis for our subsequent numerical simulations and performance analysis, which will

further demonstrate the advantages of the SPSI method over conventional PSI techniques.

Figure 29: Simulation algorithm flow: Illustration of the key stages in the simulation algorithm. (A)

Initialization: N atoms are distributed in a 1D Gaussian distribution with given σx0 and σv0. (B) Evolution: The

atoms’ phase-space distribution after free expansion (and repulsive potential for SPSI). (C) State determination:

The |1⟩ state distribution calculated using a Monte Carlo method. (D) Imaging simulation: The number of atoms

in all states (B) and |1⟩ state (C) projected onto the position axis, simulating absorption imaging. (E) Fringe

analysis: Green dots represent the normalized distribution, and the red curve is a sinusoidal fit to these points.

From this fit, the angular velocity and its uncertainty are extracted.

5.2 Numerical Simulations

To examine the impact of the SPSI and validate our analytical model, we conduct detailed numerical

simulations comparing PSI and SPSI methods. These simulations, implemented in MATLAB, provide

insights into the potential performance improvements of our proposed method. We use realistic physical

parameters corresponding to existing systems for the cooling, trapping, and light potential phases. The

simulation flow, illustrated in Fig. 29, consists of the following key stages:

• Initialization: We generate a cloud of N atoms (N = 106 in our simulations) following the cooling

phase. The atoms are distributed spatially according to a Gaussian distribution with standard

deviation σx0 and mean value zero. Their velocities follow a Maxwell-Boltzmann distribution

corresponding to the given temperature T . We assume the atoms are optically pumped to the

|F = 1,mF = 0⟩ state of the 87Rb hyperfine manifold (denoted as |1⟩).
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• Evolution: For PSI simulations, the cloud undergoes free expansion for the interferometer time

2TR, solved using kinematic equations. For SPSI simulations, we first solve ordinary differential

equations (ODEs) for the dynamics of each atom under the influence of the light potential. We

use MATLAB’s ’ode15s’ function to solve these 2N ODEs for the acceleration time tacc. Following

this, we solve the free expansion kinematic equations as in the PSI case.

• State determination: We calculate the probability P|1⟩ for each atom to be in the |1⟩ state based on

its final velocity using Eq. 32. We then use a Monte Carlo method to determine the final internal

state of each atom.

• Imaging simulation: We simulate a two-state absorption imaging of the atomic cloud by binning

the atoms into spatial locations, with each bin representing a ”pixel” of the imaging system. We

then normalize the counts of atoms in the |1⟩ state to the total population in each bin: P1 =

N|1⟩(x)/Ntotal(x). This reveals the interferometer’s fringe pattern as per Eq. 30, illustrated in

Fig. 30.

• Fringe analysis: We fit a sinusoidal function of the form y(x) = a sin(2πb · x+ c) + d to the nor-

malized data. We use a Fast Fourier Transform (FFT) to identify initial guesses for the frequency

parameter b, which corresponds to the fringe periodicity kx. We then use MATLAB’s ’fit’ function

with these initial guesses to find the best fit. From the fitted kx, we calculate the angular veloc-

ity using Eq. 31. The α factor is accounted for by scaling the fit’s frequency accordingly before

extracting the angular velocity as described in Eq. 30.

• Uncertainty calculation: We compute the uncertainty in angular velocity (single-shot sensitivity

δΩ) based on the fit uncertainty. We validate this by running multiple simulation repetitions and

calculating the standard deviation of the results.

To improve the fit’s success rate, we implement a basic image processing stage before normalizing P1.

This involves applying different averaging windows to reduce noise and examining various regions of inter-

est in the image, excluding noisier edges where fewer atoms are counted. Fig. 30 compares the simulation

results for both PSI and SPSI methods. It clearly demonstrates the improved contrast and increased

number of fringes in the SPSI method, leading to a significantly lower fit deviation and uncertainty

compared to the PSI case.

These simulations provide a robust framework for comparing the performance of PSI and SPSI meth-

ods under various conditions, allowing us to quantify the improvements in sensitivity and dynamic range

offered by our proposed SPSI technique.

5.3 Performance Analysis

Building upon our analytical derivation and numerical simulations, we now present a comprehensive

performance analysis of the SPSI method compared to the standard PSI technique. This focuses on three

key aspects: sensitivity, dynamic range, and potential for miniaturization.
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Figure 30: Simulation fringe pattern fit: Comparison of simulation results for PSI (top) and SPSI (bottom)

methods. The light blue shaded area shows the total number of atoms in each bin (Ntotal), while the darker

shade indicates atoms in the |1⟩ state (N|1⟩). Green points represent the normalized probability for the |1⟩ state

(P1 = N|1⟩(x)/Ntotal(x)), with the red line showing the sinusoidal fit. Simulation parameters: N = 106 atoms,

σx0 = 100, µm, T = 5 µK, TR = 25 ms, Ω = 40 mrad/s. For SPSI: repulsive potential with P = 1 W, beam cross-

section 400 × 400 µm2, tacc = 20 µs, resulting in ω = 2π × 1.214 kHz (Eq. 63), η = 5.4 (Eq. 60), and teff = 0.84 ms

(Eq. 61). Note the improved contrast and increased number of fringes in SPSI compared to PSI, leading to lower

fit deviation and uncertainty.

5.3.1 Sensitivity and Dynamic Range

The sensitivity and dynamic range of the interferometer are crucial performance metrics. Fig. 31

illustrates the contrast of the interference pattern as a function of angular velocity for both PSI and

SPSI methods. The SPSI demonstrates a significant improvement in contrast over a wider range of

angular velocities, indicating an enhanced dynamic range. We note that at high angular velocities, the

fringe spatial frequency increases, making the detection pixel resolution a limiting factor. This causes

the numerical contrast to decay more rapidly than the analytical prediction, which does not account for

this limitation. Conversely, the SPSI can measure lower angular velocities than PSI due to its larger final

cloud radius, which increases sensitivity to slow rotations characterized by low spatial fringe frequencies.

This improvement in both limits is depicted in Fig. 31(B) by the analytical curve of the detection range

as a function of η according to Eq. 35. Hence, the dynamic range, defined as Ωmax/Ωmin (Eq. 35), is

improved by a factor of η2 in the SPSI method. This improvement stems from two effects:

• Reduction of Ωmin by a factor of η due to the increased final cloud size: σf ≈ teffσv0η.

• Increase of Ωmax by a factor of η due to the reduction of the effective initial cloud radius σ̃x0 = ησx0.

Fig. 32(A) presents a comparison of the relative sensitivity δΩ/Ω between the two methods. It demon-
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Figure 31: Contrast and dynamic range: (A) Contrast vs. angular velocity (Ω). Using 87Rb atoms, the

simulation parameters are initial cloud size σx0 = 100 µm, temperature T = 5 µK, and time between pulses

TR = 5 ms. For the repulsive potential, we take a beam power of P = 1 W with a cross-section of 400 × 400 µm2,

blue-detuned by ∆ = 2π ·10 GHz, and focused such that in the direction of acceleration it gives rise to an inverted

harmonic potential and in the transverse direction a constant potential. The harmonic profile was optimized to

achieve a large squeezing factor before the atoms exceed the region where the repulsive potential is harmonic.

Following Eqs. 60 and 63, and choosing tacc = 80.6 µs, we find a squeezing parameter of 22.81. The purple line

represents the analytical solution of PSI contrast, while the dashed orange line corresponds to SPSI, according to

Eq. 33. The data points are the result of a numerical simulation. While the contrast reduction due to the ratio

between the fringe periodicity and the initial cloud size determines the upper limit of the detection range, there

exists a lower limit when the fringe period becomes larger than the final cloud size. These limits are roughly given

by Ωmin and Ωmax (Eq. 35), which are presented in the graph as vertical dashed lines. It is evident that using the

SPSI greatly improves the contrast, thereby increasing the detection dynamic range. At high angular velocities,

the contrast of the data points decreases faster than the analytical solution due to the short spacing between

fringes relative to the detection pixel size considered only in the numerical calculation. (B) The analytical curve

of the detection range as a function of η according to Eq. 35. The dashed line presents the SPSI simulated in (A)

with η = 22.81.

strates an improvement of over one order of magnitude when both methods operate within their dynamic

range (60 ≲ Ω ≲ 200 mrad/s), with a notably superior ratio beyond that range. The plot of angular

velocity deviation ∆Ω = (Ωmeas − Ω) in Fig. 32(B) further supports these findings.

5.3.2 Compactness

To demonstrate the advantage of the SPSI in terms of compactness, we introduce the dimensionless

parameter at = TR,SPSI/TR,PSI, representing the reduction in Ramsey time in a compact SPSI relative
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Figure 32: Relative sensitivity and measured angular velocity deviation: (A) Relative sensitivity δΩ/Ω

vs Ω, where Ω is the nominal (actual) angular velocity, for the same simulation parameters and notation as in

Fig. 31. The analytical curves are determined according to Eq. 34. The data points for PSI are not shown at large

angular velocities, since δΩ/Ω exceeds the value of 1, thus irrelevant. (B) Simulation results of the measured

angular velocity deviation ∆Ω ≡ (Ωmeas − Ω) for different angular velocities. Here ∆Ω denotes the discrepancy

between the measured and nominal angular velocities, while the sensitivity (uncertainty) δΩ is represented by the

error bars. The data point labels are the same as in (A), while the black dashed line illustrates the point-source

(PS) limit of zero deviation. The data points for PSI are not shown at large angular velocities, since ∆Ω is too

large. The enhanced performance of the SPSI in dynamic range and sensitivity (measurement uncertainty) is

clearly visible.

to a standard PSI (at < 1). This reduction also decreases the fall distance h during the interferometer

by a2
t . Additionally, the final cloud’s radius scales as σf ∼ atTexσv0η. Based on these considerations, we

can express the sensitivity per shot for SPSI as:

δΩ ∼ 1
atT 2

R · 2keffC
√
N/2 · atσv0η

, (69)

leading to a sensitivity per shot ratio of δΩSPSI/δΩPSI = (CPSI/CSPSI)/(a2
t · η). While the ratios of the

detection limits of PSI and SPSI are determined by:

Ωmin,SPSI

Ωmin,PSI
= 1
a2

t · η
,

Ωmax,SPSI

Ωmax,PSI
= η

at
. (70)

Overall, the ratio Ωmax/Ωmin changes by a factor of η2 · at.

For the design of a rotation sensor, it would be necessary to compromise between sensitivity and

compactness and to identify the optimal operational point based on the parameters η and at. Fig. 33

illustrates the advantage in single-shot sensitivity offered by the SPSI over the standard PSI for different

parameter values. It is evident that the incorporation of a repulsive potential allows for a sensitivity
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enhancement of up to two orders of magnitude, while concurrently reducing the cycle time by a factor of

approximately two, or alternatively, decreasing the cycle time by around tenfold without compromising

sensitivity.

Figure 33: Sensitivity-compactness trade-off in the SPSI: The plot shows the single-shot sensitivity ratio

δΩSP SI/δΩP SI (Eq. 69) as a function of the squeezing parameter η and the cycle time ratio at = TSP SI/TP SI . The

simulation parameters are: angular velocity Ω = 100 mrad/s, Ramsey time TR = 10 ms, temperature T = 2 µK,

and initial cloud size σx0 = 100 µm. The maximum value of η ensures most atoms experience the same potential

during acceleration. The bold black line indicates the validity boundary of this plot, beyond which the minimal

detectable angular velocity of the SPSI method (Eq. 70) exceeds the nominal angular velocity Ω. It is evident

that the implementation of a repulsive potential allows for a sensitivity enhancement of more than an order

of magnitude while simultaneously reducing the cycle time by a factor of about two (indicated in bright red)

or reducing the cycle time by approximately tenfold without affecting the sensitivity (indicated in light-blue).

Specifically, utilizing the compactness factor definition of Eq. 71, we find that with η = 40 and at = 0.1, we have

a performance enhancement of CFSP SI/CFP SI ≃ 2 · 104 (black point).

Considering that sensitivity per unit time (Eq. 34 scales as the inverse square root of the repetition

rate ν = 1/τrep, and noting that the repetition rate ratio between SPSI and standard PSI scales as at,

we derive the sensitivity ratio per unit time as δΩSP SI/δΩP SI = (CP SI/CSP SI)/a1.5
t · η.

To better quantify the performance improvement, we introduce a compactness factor:

CF ≡ Ωmax/Ωmin
δΩ · h

. (71)

This factor encapsulates sensitivity δΩ (Eq. 69), dynamic range (as the ratio Ωmax/Ωmin, Eq. 70),

and the vertical size of the interferometer h. Based on the previous comparison between SPSI and PSI,

we observe an improvement ratio of η3 · √
at, which can exceed four orders of magnitude. For instance,

considering the conditions depicted in Fig. 33, with η = 40 and at = 0.1, we derive CFSPSI/CFPSI ≃ 2·104.
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5.3.3 Chip-Scale Device Potential

To explore the potential for miniaturization, we compare standard PSI and SPSI under constraints

relevant to chip-scale devices. Let us now compare standard PSI with SPSI within the constraints of

identical Ramsey times (at = 1) and fall heights h in the context of chip-scale devices. Employing the

repulsive potential to expand acceleration parallel to the chip’s plane enables the SPSI method to optimize

the device’s confinement.

For the comparison, under the same initial conditions (temperature, cloud size, and number of atoms),

the ratio between the sensitivities obtained in the two methods is δΩSPSI/δΩPSI ≈ (CPSI/CSPSI)/η.

Within the dynamic range of both methods, the contrast ratio is approximately unity, while the detection

limits ratio is the same as in Sec. 5.3.1. Consequently, for chip-scale devices, we can expect the sensitivity

improvement of about η and an increase in the dynamic range Ωmax/Ωmin by a factor of η2.

For a future chip-scale device, we consider a scenario with a rectangular vacuum cell of dimensions

1 mm × 10 mm × 10 mm, with the short dimension aligned perpendicular to the direction of the repulsive

potential’s acceleration. Using realistic parameters (N = 106 87Rb atoms, σx0 = 100µm, T = 2µK,

TR = 2.5 ms), and employing a fully harmonic potential characterized by dimensions of x0 = 200µm

and z0 = 400µm, with total power of P = 1 W and an acceleration time of tacc = 0.1 ms, we achieve a

squeezing parameter η = 46.2 and a final velocity uncertainty σ̃v0 = 0.64 m/s. The final cloud dimensions

are σf,z = 170µm height and σf,x = 0.33 cm width. Without heating (Sec. 5.1.2), a vacuum dimension

of 0.5 mm would suffice, but if heating is not mitigated, a vacuum dimension of 1 mm would be required,

or alternatively, one would have to take into account that a considerable number of atoms could not be

recaptured for the next cycle, and reloading atoms from a source would be required.

With an operation rate of τ = 100 s−1, the SPSI exhibits a sensitivity of δΩ = 1µrad/(s ·
√

Hz) and

a one-shot sensitivity of δΩ = 10µrad/s. The minimum and maximum detectable angular velocities

are Ωmin = 7.5 mrad/s and Ωmax = 11.47 rad/s, respectively. These results demonstrate that SPSI can

achieve high sensitivity and a wide dynamic range within the constraints of a chip-scale device, offering

a ∼ 46-fold improvement in sensitivity and more than 3 orders of magnitude increase in dynamic range

compared to standard PSI under the same conditions.

In conclusion, our performance analysis demonstrates that the SPSI method offers significant advan-

tages over conventional PSI techniques in terms of sensitivity, dynamic range, and potential for miniatur-

ization. These improvements pave the way for the development of high-performance, compact rotation

sensors with applications in inertial navigation, geophysics, and fundamental physics experiments.
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סיבוב לחישת אטומית אינטרפרומטרה

סינה ילי

במדעים מוסמך תואר

בנגב בן-גוריון אוניברסיטת

תשפ"ה

תקציר

בדיוק סיבוב למדידת (PSI) נקודתי מקור בעל אטומי אינטרפרומטר של הפיתוח את מציגה זו תזה

הרגישות, בשיפור התמקדות תוך PSI בטכנולוגיית ותיאורטיות ניסיוניות התקדמויות מציגים אנו גבוה.

למיניאטוריזציה. והפוטנציאל הדינמי, הטווח

מלכודת הכוללת רב-תכליתית, דו-תאית מערכת של ובנייה תכנון כוללת שלנו הניסיונית העבודה

תלת-ממדית מגנטו-אופטית מלכודת ותא קרים, אטומים ליצירת (2D-MOT) דו-ממדית מגנטו-אופטית

בעלי מגנטיים סלילים שילוב הוא מרכזי אלמנט ואינטרפרומטריה. אטומים ללכידת (3D-MOT)

ויצירת החשמל צריכת מזעור תוך חזקה אטומים כליאת המאפשר הוואקום, תא בתוך גבוהה גרדיאנט

החום.

(SPSI) דחוס נקודתי מקור של האטומי האינטרפרומטר שיטת את מציגים אנו התיאורטית, בחזית

תהליך לפני האטומים מכלול של הפאזה מרחב התפלגות את לתמרן כדי דוחה פוטנציאל המשלבת

את לשפר יכול SPSI כי מדגימים אנו נומריות, וסימולציות אנליטי פיתוח באמצעות האינטרפרומטר.

בו-זמנית. המחזור זמן הפחתת תוך מאה פי עד האינטרפרומטר רגישות

הרגישות, מידת את המשלב הקומפקטיות פקטור את ומגדירים מקיף, ביצועים ניתוח מציגים אנו

תצורות לעומת אלפים עשרת פי עד של שיפור מראות התוצאות המכשיר. ומימדי הדינמי, הטווח

למדידת שבב של מידה בקנה אטומיים אינטרפרומטרים לפיתוח הדרך את וסוללות סטנדרטיות, PSI

סיבוב.

המדידה יכולות את ומרחיבה האטומית האינטרפרומטריה טכנולוגיית לקידום תורמת זו עבודה

בניווט האמיתי בעולם ליישומים קומפקטיים מכשירים לקראת משמעותית התקדמות תוך המדויקת,

בסיסית. פיזיקה ובדיקות גיאופיזיקה, אינרציאלי,

i
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הטבע למדעי הפקולטה

לפיזיקה המחלקה

סיבוב לחישת אטומית אינטרפרומטרה

מוסמך התואר לקבלת מהדרישות חלק מהווה זה חיבור

(M.Sc) הטבע למדעי
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